maxon

Servo Controllers

ESCON2

Communication Guide

ESCONZ2 Servo Controllers
Communication Guide
CCMC | Edition 2024-12 | DoclD rel11981

http://escon.maxongroup.com

Table of Contents m axo n

TABLE OF CONTENTS

1 ABOUT 5
1.1 Aboutthisdocument. 5
1.2 TargetaudienCe e e 5
1.3 HOW O USE . . e e e e e e 6
1.4 Sources for additional information 9
1.5 CopPYgNt . e 9
1.6 AbOUtthe deViCeS e e 10
1.7 About the safety precautions 10
2 USB & SERIAL COMMUNICATION (SCI) 11
2.1 Generalinformation 11
2.2 Communication basiCs 11
2.3 Commandreference. 20
3 CAN COMMUNICATION 23
3.1 Generalinformation 23
3.2 CANOPENDASICS. . . .o e 23
3.3 CANopen application layer. 30
3.4 Layersetting services (LSS). 45
4 FIRMWARE UPDATE 53
41 Programdatafile 53
4.2 Supported interfaces and SEQUENCE. ottt 53
4.3 Update procedure. e 53
4.4 Objectdictionary. 55
LIST OF FIGURES 63

READ THIS FIRST

These instructions are intended for qualified technical personnel. Prior commencing with any activities...
» you must carefully read and understand this manual and
» you must follow the instructions given therein.

ESCON2 Servo Controllers are considered as partly completed machinery according to EU Directive 2006/42/EC, Article 2,
Clause (g) and are intended to be incorporated into or assembled with other machinery or other partly completed
machinery or equipment.

Therefore, you must not put the device into service, ...

* unless you have made completely sure that the other machinery fully complies with the EU directive’s requirements!

* unless the other machinery fulfills all relevant health and safety aspects!

» unless all respective interfaces have been established and fulfill the herein stated requirements!

ESCONZ2 Servo Controllers Communication Guide
A-2 CCMC | 2024-12 | rel11981

m axo n Table of Contents

LIST OF TABLES 65

INDEX 6

ESCON2 Servo Controllers Communication Guide
CCMC | 2024-12 | rel11981 A-3

e maxon

eepage intentionally left blankee

ESCONZ2 Servo Controllers Communication Guide
A-4 CCMC | 2024-12 | rel11981

About
m x n About this document

1.1

1.2

ABOUT

About this document

1.1.1 Intended purpose

This document familiarizes you with the ESCON2 Servo Controllers. It describes the tasks for safe and proper
installation and commissioning. Follow the instructions:

+ to avoid dangerous situations,
+ to keep installation and/or commissioning time at a minimum,
+ toincrease reliability and service life of the described equipment.

This document is part of a documentation set. It includes performance data, specifications, standards information,
connection details, pin assignments, and wiring examples. The overview below shows the documentation hierarchy
and how its parts are related:

Motion Installer

Release Notes

I Feature Chart EDE

Installation Configuration Programming Application
| Hardware Reference |@ Motion Studio | Command Libraries 2! | Application Notes ©!
MPOF ' [
L User Guides | Communication Guide
| FW Version Readme | Firmware Specification
v &

[a] including software programming examples
[b] will be available with upcoming release

Figure 1-1 Documentation structure

Find the latest edition of this document, along with additional documentation and software for ESCONZ2, at: http://
escon.maxongroup.com

Target audience

This document is intended for trained and skilled personnel. It provides information on how to understand and perform
the respective tasks and duties.

ESCON2 Servo Controllers Communication Guide
CCMC | 2024-12 | rel11981 1-5

About
Howto use maxon

1.3 How to use
Follow these notations and codes throughout the document.

ESCON2 stands for kESCON2 Servo Controller»

«Abcd» indicating a title or a name (such as of document, product, mode, etc.)
refers to an item (such as a part number, list items, etc.)

refers to an internal value

denotes “check”, “see”, “see also”, “take note of” or “go to”

Table 1-1 Notations used in this document

CCw Counterclockwise

5
o
—
[¢]
=

el
(V)
=i
7]
(@]
=h
—
=)
(7]
Q
o
(@]
c
3
]
=]
=3
—
=y
]
E_)h
)
g
>

«Q
V)
o
o
=
(9]
<
]
=
o
>
7]
V)
>
o
QD
(@]
=
o
=]

<
3
7]
S
o
(]
c
[
(]
o

CAN CAN Application Layer
CiA CAN in Automation

CMS CAN Message Specification

Communication Object (CAN Message) — a unit of transportation in a CAN message

Tl network. Data must be sent across a network inside a COB.

COB Identifier — identifies a COB uniquely in a network and determines the priority of

COB-ID that COB in the MAC sublayer

CST Cyclic Synchronous Torque Mode

(2]
(7]
<

Cyclic Synchronous Velocity Mode

s}
2

Clockwise

Electronic Data Sheet — used by CAN network configuration tools, e.g. PLC's system
managers

General purpose input/output

Identifier — the name by which a CAN device is addressed
I/0O Current Mode

1/0O Velocity Mode

-
(/)]

Layer setting services

Medium Access Control — one of the sublayers of the Data Link Layer in the CAN
Reference Model. Controls the medium permitted to send a message.

Network Management
Object Dictionary

Object Dictionary — the full set of objects supported by the node. Represents the
interface between application and Communication objects

Process Data Object — object for data exchange between several devices

ESCONZ2 Servo Controllers Communication Guide
1-6 CCMC | 2024-12 | rel11981

maxon owo e

Programmable Controller — can serve as a CAN Master for the ESCON2

Profile Velocity Mode
Read Only
Read Write

Service Data Object — peer-to-peer communication with access to the device’s Object
Directory

Write Only

—
)
=2
)
-
U
N

Abbreviations & acronyms used

T =

Numbers followed by “b”. binary
Numbers followed by “h”. hexadecimal

All other numbers. decimal

_|
Q
=2
(0]
N
]
w

CAN communication | Notations

CAN Client
or A host (typically a PC, PLC, or other control device) supervising the nodes of a network
CAN Master

CAN Server
or A node in the CAN network that can provide service under the CAN Master’s control
CAN Slave

A CAN message with meaningful functionality and/or data. Objects are referenced
according to addresses in the Object Dictionary.
“received” data is being sent from the control equipment to the ESCON2
“transmitted” data is being sent from the ESCON2 to the other equipment

Table 1-4 CAN communication | Terms

ESCON2 Servo Controllers Communication Guide
CCMC | 2024-12 | rel11981 1-7

About
How to use

1.3.1 Symbols & signs

maxon

This document uses the following symbols and signs:

Requirement,
Note, Remark

Indicates an activity you must perform prior to continuing, or gives information on a
particular point that must be observed.

Best practice

Indicates an advice or recommendation on the easiest and best way to further
proceed.

Material
Damage

Type Symbol | Meaning
Safety alert Indicates an imminent hazardous situation. If not avoided, it will result in death
DANGER or serious injury.
WARNING Indlcat.es a .pc.>tent|al hazardous situation. If not avoided, it can result in death
/ ! \ or serious injury.
Indicates a probable hazardous situation or calls the attention to unsafe
CAUTION - . . Lo
practices. If not avoided, it may result in injury.
PI"O-thIted @ Indicates a dangerous action. Hence, you must not!
action
(typical)
Mapdatory Indicates a mandatory action. Hence, you must!
action
(typical)

Indicates information particular to possible damage of the equipment.

Table 1-5

Symbols and signs

1.3.2 Trademarks and brand names

For easier legibility, registered brand names are listed below and will not be further tagged with their respective trade-
mark. It must be understood that the brands (the list below is not necessarily concluding) are protected by copyright
and/or other intellectual property rights, even if their legal trademarks are omitted in the later course of this document.

Table 1-6

Adobe® Reader® © Adobe Systems Incorporated, USA-San Jose, CA

Brand names and trademark owners

1-8

ESCONZ2 Servo Controllers Communication Guide
CCMC | 2024-12 | rel11981

About
m x n Sources for additional information

14 Sources for additional information
For further details and additional information, please refer to the resources listed below:

m Reference

USB Implementers Forum: Universal Serial Bus Revision 2.0 Specification
www.usb.org/developers/docs

CiA 102: CAN physical layer for industrial applications
www.can-cia.org

CiA 301: CANopen application layer and communication profile
Wwww.can-cia.org

[31
CiA 302: CANopen additional application layer functions

www.can-cia.org

CiA 305: Layer Setting Services (LSS) and protocols
www.can-cia.org

CiA 306: CANopen electronic data sheet specification
www.can-cia.org

CiA 402: CANopen device profile for drives and motion control
Wwww.can-cia.org

[7]
CiA 801: Automatic bit-rate detection
www.can-cia.org

Bosch’s CAN Specification 2.0
www.can-cia.org

Konrad Etschberger: Controller Area Network
ISBN 3-446-21776-2

maxon: ESCON2 Communication Guide
WWW.maxongroup.com

maxon: ESCON2 Hardware Reference
http://escon.maxongroup.com

maxon: ESCON2 Firmware Specification
WWW.maxongroup.com

IEC 61158-x-12: Industrial communication networks — Fieldbus specifications (CPF 12)
IEC 61800-7 Ed 2.0: Adjustable speed electrical power drives systems (Profile type 1)

EN 5325-4 Industrial communications subsystem based on ISO 11898 (CAN) for controller device
interfaces Part4: CANopen

Table 1-7 Sources for additional information

1.5 Copyright

© 2024 maxon. All rights reserved. Any use, in particular reproduction, editing, translation, and copying, without prior
written approval is not permitted (contact: maxon international Itd., Brinigstrasse 220, CH-6072 Sachseln,
+41 41 666 15 00, www.maxongroup.com). Infringements will be prosecuted under civil and criminal law. The men-
tioned trademarks belong to their respective owners and are protected under trademark laws. Subject to change with-
out prior notice.

CCMC | ESCON2 Servo Controllers Communication Guide | Edition 2024-12 | DoclD rel11981

ESCON2 Servo Controllers Communication Guide
CCMC | 2024-12 | rel11981 1-9

http://www.usb.org/developers/docs
http://www.can-cia.org
http://www.can-cia.org
http://www.can-cia.org
http://www.can-cia.org
https://www.maxongroup.com/en/drives-and-systems/controls/current-and-speed-controllers
http://www.maxongroup.com/
http://www.can-cia.org
http://www.maxongroup.com/
http://www.can-cia.org
http://www.can-cia.org
http://www.can-cia.org

About

About the devices m axo n

1.6

1.7

A
Aiad

About the devices

The ESCON2 is a small-sized, powerful 4-quadrant PWM servo controller. lts high power density allows flexible use
for brushed DC motors and brushless EC (BLDC) motors up to approximately 1’800 Watts with various feedback
options, such as Hall sensors, incremental encoders in a multitude of drive applications. The device is specially
designed to be commanded and controlled by analog and digital set values as well as a slave node in a CANopen
network.

It also features extensive analog and digital I/0 functionality. Latest technology, such as field-oriented control (FOC),
acceleration and velocity feed forward, in combination with highest control cycle rates allow sophisticated, ease-of-use
motion control.

You might also want to look at the ESCON2 video library. It includes video tutorials that show you how to get started
with «Motion Studio» and show you tips and techniques on how to set up communication interfaces, among other
things.

About the safety precautions
* Read and understand the note & «READ THIS FIRST»!
* Do not start any work unless you have the required skills = Chapter “1.2 Target audience” on page 1-5.
» Refer to »Chapter “1.3.2 Trademarks and brand names” on page 1-8 to understand the symbols used.

» Follow all applicable health, safety, accident prevention, and environmental protection regulations for your
country and work site.

High voltage and/or electrical shock

Touching live wires can cause death or serious injuries.

» Treat all power cables as live unless proven otherwise.

» Ensure neither end of the cable is connected to live power.

» Ensure the power source cannot be turned on while you work.
» Follow lock-out/tag-out procedures.

Requirements

» Install all devices and components according to local regulations.

» Electronic devices are not fail-safe. Ensure any machine has independent monitoring and safety equipment. If the
machine breaks down, is operated incorrectly, or if the control unit or cables fail, etc. the drive system must return to
and stay in a safe mode.

* Do not repair any components supplied by maxon.

Electrostatic sensitive device (ESD)

» Wear working cloth and use equipment in compliance with ESD protective measures.
» Observe precautions for handling Electrostatic sensitive devices.

* Handle the device with care.

ESCONZ2 Servo Controllers Communication Guide
CCMC | 2024-12 | rel11981

USB & Serial Communication (SCI)
m axo n General information

2 USB & SERIAL COMMUNICATION (SCl)

2.1 General information

For USB and Serial Communication Interface (SCI), maxon ESCON2 drives use the identical protocol «maxon serial
protocol V2». The data bytes are sequentially transmitted in frames. The first two bytes (DLE/STX) are used for frame
synchronization. Therefore, there is no need to wait for an acknowledge. A frame composes of...

* synchronization characters,

* header with data stuffing,

« variably long data field with data stuffing, and

» 16-bit long cyclic redundancy check (CRC) for verification of data integrity with data stuffing.

DLE STX OpCode Len Data[0] Data[Len-1] CRC
(8-bit) (8-bit) (8-bit) (8-bit) (16-bit) (16-bit) | (16-bit)
SYNC HEADER DATA CRC
Figure 2-2 USB & serial communication (SCI) | V2 protocol frame structure
2.2 Communication basics

2.21 Physical layer

You can use serial communication only for point-to-point communication between a master and a single ESCON2
slave.

22141 usB

ELECTRICAL STANDARD
The ESCONZ2’s USB interface refers to the =» [1] «Universal Serial Bus Specification Revision 2.0»

MEDIUM

For the physical connection, standard shielded USB cables will be required.

221.2 SCI

ELECTRICAL STANDARD

The ESCONZ2 serial communication interface uses the signals TxD, RxD, and GND. The interface uses logic signals
according to the UART standard for onboard communication only. For board-to-board communication, the signals
must meet the RS232 standard.

WARNING
e

The UART and RS232 signals are not compatible. Connecting a UART signal directly to an RS232 interface can
damage the hardware.

MEDIUM

To make a physical connection, you must use a 3-wire cable. We recommend that you install a shielded, twisted pair
cable to achieve good performance, even in an electrically noisy environment. The cable length can range from 3 to
15 meters, depending on the bit rate. However, we do not recommend that you use RS232 cables longer than 5
meters.

ESCON2 Servo Controllers Communication Guide
CCMC | 2024-12 | rel11981 2-11

USB & Serial Communication (SCI)

Communication basics

2.2.2 Data link layer

2.2.21

Flow control

The ESCON2 always communicates as a slave.

maxon

A frame is only sent as an answer to a request. All commands send an answer. The master must always initiate
communication by sending a packet structure.

The data flow while transmitting and receiving frames are as follows:

. Master Slave
Client PC ESCON2
: ExecuteCommand() < E
> :
SendFrame() N E
ReceiveFrame
G emmmmenemnnno o RECEIVEF TAME O . H
iGomeneenmreonrnnnnaereees i E
Figure 2-3 USB & serial communication (SCI) | Commands
Master Slave
PC ESCON2
: SendByte(DLE) o |
L_] d
: SendByte('STX) N
L
SendStuffedData(OpCode, Len, Data, Crc)
U .
Figure 2-4 USB & serial communication (SCI) | Sending a data frame to ESCON2
Master Slave
PC ESCON2
P SendByte(DLE') :
L_'\
L, SendByte('STE')
L_|\
,SendStuffedData(OpCode, Len, Data, Crc)
u\
Figure 2-5 USB & serial communication (SCI) | Receiving a response data frame from ESCON2

2-12

ESCONZ2 Servo Controllers Communication Guide

CCMC | 2024-12 | rel11981

USB & Serial Communication (SCI)
m axo n Communication basics

2222

Frame structure

The data bytes are sequentially transmitted in frames. A frame composes of...

» synchronization (and byte stuffing),

* header,

+ variably long data field, and

» 16-bit long cyclic redundancy check (CRC) for verification of data integrity.

Command frame

Word DataArray for
CRC calculation

(little endian)

Byte stream
(low byte first)

Figure 2-6

SYNC

HEADER

DATA

OpCode Len Parameters]
(8-bit) (8-bit) (Len * 16-bit)
Header Data 1 Data 2 Data m CRC
(16-bit) (16-bit) (16-bit) == (16-bit) (16-bit)
DLE STX Byte 1 Byte 2 Byte n-1 Byte n
(8-bit) (8-bit) (8-bit) (8-bit) T (8-bit) (8-bit)
SYNC Byte-stuffed DATA

USB & serial communication (SCI) | Frame structure

The first two bytes are used for frame synchronization.
DLE Starting frame character “DLE” (Data Link Escape) = 0x90
STX Starting frame character “STX” (Start of Text) = 0x02

The header consists of 2 bytes. The first field determines the type of data frame to be sent or received.
The next field contains the length of the data fields.

Operation command to be sent to the slave. For details on the command set
=“Command reference” on page 2-20.

OpCode
Len Represents the number of words (16-bit value) in the data fields [0...143].

The data fields contain the parameters of the message. The low byte of the word is transmitted first.
Data[i] The parameter word of the command. The low byte is transmitted first.

CRC 16-bit long cyclic redundancy check (CRC) for verification of data integrity.

Note
@ As a reaction to a bad OpCode or CRC value, the slave sends a frame containing the corresponding error code.

For an example on composition and structure of ESCON2 messages =»Chapter “2.2.8 Example: Command instruc-
tion” on page 2-17.

ESCON2 Servo Controllers Communication Guide
CCMC | 2024-12 | rel11981 2-13

USB & Serial Communication (SCI)
Communication basics

2.2.3 Cyclic redundancy check (CRC)
CRC is used for verification of data integrity.

2.2.31 CRC calculation

Note

The 16-bit CRC checksum uses the algorithm CRC-CCITT.

maxon

For calculation, the 16-bit generator polynomial “%16+x72+x5+x0” js used.

The CRC is calculated before data stuffing and synchronization.
Add a CRC value of “0” (zero) for CRC calculation.
The data frame bytes must be calculated as a word.

2.2.3.2 CRC algorithm

ArrayLength: Len + 2 WORD DataArray[ArrayLength]

Generator Polynom G(x):

10001000000100001 (= x'6+x12+x5+x0)

DataArray[0]: HighByte(Len) + LowByte(OpCode)
DataArray[1]: Data[0]

DataArray[2]: Data[1]

DataArray[ArrayLength-1]: 0x0000 (CrcValue)

WORD CalcFieldCRC (WORD* pDataArray, WORD ArrayLength)
{

}
F

WORD shifter, c;
WORD carry;
WORD CRC = O;

//Calculate pDataArray Word by Word
while (ArrayLength—--)
{

shifter = 0x8000; //Initialize BitX to Bitl5
c = *pDataArray++; //Copy next DataWord to c
do
{
carry = CRC & 0x8000; //Check if Bitl5 of CRC is set
CRC <<= 1; //CRC = CRC * 2
if(c & shifter) CRC++; //CRC = CRC + 1, if BitX is set in c
if (carry) CRC "~= 0x1021; //CRC = CRC XOR G(x), if carry is true
shifter >>= 1; //Set BitX to next lower Bit, shifter = shifter/2

} while(shifter);
}
return CRC

igure 2-7 USB & serial communication (SCI) | CRC algorithm

2-14

ESCONZ2 Servo Controllers Communication Guide
CCMC | 2024-12 | rel11981

USB & Serial Communication (SCI)
m axo n Communication basics

2.2.4 Byte stuffing

The sequence “DLE” and “STX” are reserved for frame start synchronization. If the character “DLE” appears at a posi-
tion between “OpCode” and “CRC” and is not a starting character, the byte must be doubled (byte stuffing). Otherwise,
the protocol begins to synchronize for a new frame. The character “STX” needs not to be doubled.

EXAMPLES:

Sending Data 0x21, 0x90, 0x45

Stuffed Data 0x21, 0x90, 0x90, 0x45

Sending Data 0x21, 0x90, 0x02, 0x45

Stuffed Data 0x21, 0x90, 0x90, 0x02, 0x45
Sending Data 0x21, 0x90, 0x90, 0x45

Stuffed Data 0x21, 0x90, 0x90, 0x90, 0x90, 0x45

Important:
Byte stuffing is used for all bytes (CRC included) in the frame except the starting characters.

2.2.5 Transmission byte order
To send and receive a word (16-bit) via the serial port, the low byte will be transmitted first.

Multiple byte data (word = 2 bytes, long word = 4 bytes) are transmitted starting with the less significant byte (LSB)
first.

A word will be transmitted in this order: byteO (LSB), byte1 (MSB).
A long word will be transmitted in this order: byteO (LSB), byte1, byte2, byte3 (MSB).

2.2.6 Data format (Serial Communication)

Data are transmitted in an asynchronous way, thus each data byte is transmitted individually with its own start and
stop bit. The format is 1 start bit, 8 data bits, no parity, 1 stop bit. Most serial communication chips (SCI, UART) can
generate such data format.

ESCON2 Servo Controllers Communication Guide
CCMC | 2024-12 | rel11981 2-15

USB & Serial Communication (SCI)
Communication basics

2.2.7 Slave state machine

maxon

(- Waiting for

[inChar <

fl

[inChar <

[(inChar <> "DLE”) §

Waiting for "DLE"

Waiting for "STX"

Waiting for "Len"

(Waiting for "Data” | =
S e

[inChar = "STX"]

[inChar = "STX"]

[inChar = "STX"]

[inChar = "DLE"]

—~1 Escape "OpCode"

"OpCode" | =
SN

> "DLE']

[inChar = "STX"]

woLE]
arz pL

[inChar = "DLE"]

Escape "Len"

> "DLE"]

[inChar = "DLE"]

P 1 Escape "Data"

nd (DataReceived)]

[(inChar <> "DLE")

fRARA

L

[outChar

Sendin

i

[outChar

il

[outChar

Waiting for "Crc"

Sending "DLE"

Sending "OpCode"

Sending "Data”

[(inChar = "DLE") and (not DataReceived)]
[(inChar = "DLE") and (DataReceived)]
[inChar = "DLE"]

| e

=1 Escape "Crc"

nd (CrcReceived)]

Sending "STX"

L

[(inChar = "DLE") and (not CrcReceived)]
[(inChar = "DLE") and (CrcReceived)]

[outChar = "DLE"]

<> "DLE"]

Stuffing "OpCode"

[outChar = "DLE"]

gLen"

<> "DLE"]

Stuffing "Len"

[outChar = "DLE"]

<> "DLE"]

Sendin

Stuffing "Data"

[outChar = "DLE"]

g "Crc"

Stuffing "Crc"

Figure 2-8 USB & serial communication (SCI) | Slave state machine

ESCONZ2 Servo Controllers Communication Guide
CCMC | 2024-12 | rel11981

USB & Serial Communication (SCI)
m axo n Communication basics

2.2.8 Example: Command instruction

The following example demonstrated composition and structure of the ESCON2 messages during transmission and
reception via USB or Serial Communication.

The command sent to the ESCON2 is “ReadObject”, it can be used to read an object with up to 4 bytes.
ReadObject «Velocity actual value» (Index = 0x606C, Subindex = 0x00) from Node-ID 1

OpCode Len Parameters]

Command frame (8-bit) (8-bit) (Len * 16-bit)

Header Data 1 Data 2 Data m CRC

(16-bit) (16-bit) (16-bit) (16-bit) (16-bit)
Byte stream DLE STX Byte 1 Byte 2 Byte n-1 Byte n
(low byte first) (8-bit) (8-bit) (8-bit) (8-bit) (8-bit) (8-bit)

SYNC Byte-stuffed DATA .
Figure 2-9 USB & serial communication (SCI) | Command instruction (example)

A) SETUP
» Setup the desired frame (for details =»Chapter “2.3 Command reference” on page 2-20).

Request frame
OpCode BYTE Read object 0x60
Len BYTE Number of words 0x02
BYTE Node-ID 0x01
Parameters WORD Index of object 0x606C
BYTE Subindex of object 0x00
Table 2-8 Setup | Request frame

B) CRC CALCULATION
For details =»Chapter “2.2.3 Cyclic redundancy check (CRC)” on page 2-14):

» Prepare the word DataArray for CRC calculation (little endian):

DataArray

DataArray[0] 0x0260

DataArray[1] 0x6C01

DataArray|[2] 0x0060

DataArray[3] 0x0000 | ~use CRC value of “0” (zero)
Table 2-9 CRC calculation | Data array

Important:
» Make sure that the CRC is calculated correctly. If the CRC is not correct, the command will neither be accepted nor
processed.

* CRC calculation includes all bytes of the data frame except synchronization bytes and byte stuffing.
* The data frame bytes must be calculated as a word.
* For calculation, use a CRC value of “0” (zero).

ESCON2 Servo Controllers Communication Guide
CCMC | 2024-12 | rel11981 2-17

USB & Serial Communication (SCI)
Communication basics maxon

1) Calculate the CRC (use algorithm as in =»Chapter “2.2.3.2 CRC algorithm” on page 2-14):
ArraylLength = Len + 2
CrcValue = CalcFieldCRC (&DataArray, ArrayLength)
DataArray[ArrayLength-1] = CrcValue

2) Add the CRC value to the DataArray:

DataArray

DataArray[0] 0x0260

DataArray[1] 0x6C01

DataArray|[2] 0x0060

DataArray[3] O0xDFEA | —the calculated CRC value

Table 2-10 CRC calculation | Data array

C) COMPLETION
3) Pack the DataArray to a byte stream (low byte first).
4) Add sync bytes.
5) Add byte stuffing (= Chapter “2.2.4 Byte stuffing” on page 2-15).

6) Transmit the stuffed byte stream (=»Chapter “2.2.5 Transmission byte order” on page 2-15):
SendStuffedData(&DataArray)
Transmission order (low byte first):
0x90,0x02,0x60,0x02,0x01,0x6C,0x60,0x00,0xEA,0xDF

D) WAIT FOR RECEIVE FRAME

7) The ESCON2 will answer to the command “ReadObject” with an answer frame and the returned parameters
in the data block as follows:
Reception order (low byte first):
0x90,0x02,0x00,0x04,0x00,0x00,0x00,0x00,0x01,0x90,0x90,0x00,0x00,0x9A,0x5C

Important:
» Do not send any data before the receive frame or a timeout is present.
» ESCON?2 cannot process data simultaneously.

E) REMOVE BYTE STUFFING AND THE SYNCHRONIZATION ELEMENTS

8) Byte stream without stuffing and synchronization elements:
0x00,0x04,0x00,0x00,0x00,0x00,0x01,0x90,0x00,0x00,0x9A,0x5C

F) CRC CHECK
For details =»Chapter “2.2.3 Cyclic redundancy check (CRC)” on page 2-14):

9) Prepare the word DataArray for CRC calculation (little endian):

DataArray

DataArray[0] 0x0400
DataArray[1] 0x0000
DataArray[2] 0x0000
DataArray[3] 0x9001
DataArray[4] 0x0000
DataArray[5] 0x5C9A

Table 2-11 CRC check | Data array

2-18

ESCONZ2 Servo Controllers Communication Guide
CCMC | 2024-12 | rel11981

maxon

USB & Seria

| Communication (SCI)
Communication basics

10) Calculate the CRC (use algorithm as to =»Chapter “2.2.3.2 CRC algorithm” on page 2-14). Thereby, valid

value for CRC is “0” (zero):
ArraylLength= Len + 2

CrcValue = CalcFieldCRC (&DataArray,
Valid = (0x0000 == CrcValue)

G) CHECK

11) Check the ESCON2 receive frame.

ArrayLength)

Response frame
OpCode BYTE Read object 0x00
Len BYTE Number of words 0x04
BYTE Node-ID 0x01
Parameters DWORD Communication error 0x00000000 | =no error
DWORD Data bytes read 0x00009001 | 36’865 rpm
Table 2-12 CRC calculation | Response frame

Important:
» [Ifthe error code is unequal to “0” (zero), the command was not processed!

* Check =& «CANopen Communication Errors (Abort Codes)» in ESCONZ2 Firmware Specification
» Fix the error before attempting to resend the data frame.

ESCON2 Servo Controllers Communication Guide
CCMC | 2024-12 | rel11981

2-19

USB & Serial Communication (SCI)

Command reference

2.3 Command reference

2.31 Read functions

23141

ReadObject

maxon

Read an object value from the Object Dictionary at the given Index and Subindex.

Request frame
OpCode BYTE 0x60
Len BYTE 2 (number of words)
BYTE Node-ID
Parameters WORD Index of Object
BYTE Subindex of Object
Table 2-13 ReadObject | Request frame
Response frame
OpCode BYTE 0x00
Len BYTE 4 (number of words)
DWORD = «CANopen Communication Errors (Abort Codes)» in
Parameters ESCONZ2 Firmware Specification [12]
BYTE [4] Data Bytes Read
Table 2-14 ReadObject | Response frame
231.2 InitiateSegmentedRead

Start reading an object value from the Object Dictionary at the given Index and Subindex.

Request frame
OpCode BYTE 0x81
Len BYTE 2 (number of words)
BYTE Node-ID
Parameters WORD Index of Object
BYTE Subindex of Object
Table 2-15 InitiateSegmentRead | Request frame

Response frame
OpCode BYTE 0x00
Len BYTE 5...132 (number of words)
DWORD -)«CANopQH Communicz.atfion.Errors (Abort Codes)» in
ESCON2 Firmware Specification [12]
Parameters DWORD Object Data Length (total number of bytes)
BYTE Length (max. 255 bytes)
BYTE [0...254] Data Bytes Read
Table 2-16 InitiateSegmentRead | Response frame

2-20

ESCONZ2 Servo Controllers Communication Guide
CCMC | 2024-12 | rel11981

maxon

2313 SegmentRead

USB & Serial Communication (SCI)
Command reference

Read a data segment of the object initiated with the command = «InitiateSegmentedRead».

Request frame
OpCode BYTE 0x62
Len BYTE 1 (number of words)
BYTE [B!t 0] ControlByte Toggle Bit
Parameters [Bit 1...7] Not used
BYTE Dummy Byte without meaning
Table 2-17 SegmentRead | Request frame

Response frame

OpCode BYTE 0x00

Len BYTE 3...131 (number of words)
DWORD -)«CANopep Communicqtfion.Errors (Abort Codes)» in

ESCON2 Firmware Specification [12]

BYTE Length (max. 255 bytes)

Parameters BYTE {g:: (1)} ControlByte I‘;g?'ga?: Segment

[Bit 2...7] Not used
BYTE [0...254] Data Bytes Read
BYTE Dummy Byte when length odd
Table 2-18 SegmentRead | Response frame

2.3.2 Write functions

23.21 WriteObject

Write an object value to the Object Dictionary at the given Index and Subindex.

Request frame
OpCode BYTE 0x68
Len BYTE 4 (number of words)
BYTE Node-ID
WORD Index of Object
Parameters - .
BYTE Subindex of Object
BYTE [4] Data Bytes to write
Table 2-19 WriteObject | Request frame
Response frame
OpCode BYTE 0x00
Len BYTE 2 (number of words)
= «CANopen Communication Errors (Abort Codes)» in
Parameters DWORD ESCON2 Firmware Specification [12]
Table 2-20 WriteObject | Response frame

ESCON2 Servo Controllers Communication Guide

CCMC | 2024-12 | rel11981

2-21

USB & Serial Communication (SCI)
Command reference m x n

23.2.2 InitiateSegmentedWrite

Start writing an object value to the Object Dictionary at the given Index and Subindex. Use the command =»«Seg-
mentWrite» to write the data.

Request frame
OpCode BYTE 0x69
Len BYTE 4 (number of words)
BYTE Node-ID
Parameters WORD Index of Object
BYTE Subindex of Object
DWORD Object Data Length (total number of bytes)
Table 2-21 InitiateSegmentedWrite | Request frame

Response frame

OpCode BYTE 0x00
Len BYTE 2 (number of words)

= «CANopen Communication Errors (Abort Codes)» in
Parameters DWORD ESCON2 Firmware Specification [12]

Table 2-22 InitiateSegmentedWrite | Response frame

2323 SegmentWrite
Write a data segment to the object initiated with the command = «InitiateSegmentedWrite».

Request frame
OpCode BYTE O0x6A
Len BYTE 1...129 (number of words)
BYTE Length (max. 255 bytes)
[Bit 0] ControlByte Toggle Bit
BYTE [Bit 1] Last Data Segment
Parameters [Bit 2...7] Not used
BYTE [0...254] Data Bytes to write
BYTE Dummy Byte when length odd
Table 2-23 SegmentWrite | Request frame
Response frame
OpCode BYTE 0x00
Len BYTE 3 (number of words)
DWORD -)«CANopgn Communicqlfion‘Errors (Abort Codes)» in
ESCON2 Firmware Specification [12]
Parameters BYTE Length written (max. 255 bytes)
Bi ntrolB Toggle Bi
BYTE {Bi: ?]...7] ControlByte N%gﬁj:edt
Table 2-24 SegmentWrite | Response frame

ESCONZ2 Servo Controllers Communication Guide
2-22 CCMC | 2024-12 | rel11981

CAN Communication
m axo n General information

3.1

3.2

CAN COMMUNICATION

General information

maxon ESCON2 drives’ CAN interface follows the CiA CANopen specifications listed references in = Chapter “1.4
Sources for additional information” on page 1-9.

CANopen basics

Subsequently described are the CANopen communication features most relevant to the maxon’s ESCON2 servo
controllers. For more detailed information consult above mentioned CANopen documentation = [2].

The CANopen communication concept can be described similar to the ISO Open Systems Interconnection (OSI) Refe-
rence Model. CANopen represents a standardized application layer and communication profile.

Transmitting Receiving
Device Device
@@[U@p@@ Communication @@m@)p@ﬂ

N

Object (COB)

Application Layer Application Layer

CAN 3 3 CAN
Data Link Layer CAN Framel---l CAN Frame Data Link Layer

CAN CAN_L CAN_L CAN
Physical Layer Physical Layer
« T
N d

Figure 3-10 CAN communication | Protocol layer interactions

3.21 Physical layer

The physical layer controls the reception and transmission of raw data between nodes on a CAN bus. The CAN
standard defines this physical layer. The physical medium is a differentially driven 2-wire bus line with a common
return. The wires are CAN_H (high) and CAN_L (low). The CAN bus line must have a termination resistor (typically
120 Ohms) at both ends. The resistors prevent signal reflections. The physical medium is a differently driven 2-wire
bus line with common return.

Node 1 Node 2

CAN_H

120 Q CAN Bus Line 120 Q
CAN_L

Figure 3-11 CAN communication | ISO 11898 basic network setup

ESCON2 Servo Controllers Communication Guide
CCMC | 2024-12 | rel11981 3-23

CAN Communication
CANopen basics

maxon

3.2.2

The maxon ESCON2 drive's CAN interface follows the CANopen specifications V4.2 «CiA 301: CANopen application
layer and communication profile» and V3.0 «CiA 306: CANopen electronic data sheet specification».

Network structure

CANopen Master

CANopen Slave

ESCON2
EPOS4

CANopen Slave

ESCON2
EPOS4

CANopen Slave

ESCON2
EPOS4

120 Q

Figure 3-12 CAN communication | With external bus termination (example)
CANopen Slave CANopen Slave CANopen Master CANopen Slave
ESCON2 ESCON2
Compact 60/30
1 8

120 Q [P 188

e

' dlAr]I1 : ' canz ! ‘ CAIJ‘1 : ; C{Ahz ' ' dans ! | danz !

low
low
low

low
low

-}y Shield
-~}-4 Shield

~~14 Shield

OO 999

Figure 3-13 CAN communication | Topology with internal bus termination (example)

You must terminate the CAN bus line at both ends with a termination resistor, typically 120 Q.

Module, Micro and Nano versions

DIP switches are available only on the ESCON2 Compact and encased housing versions. For ESCON2 Nano, Micro,
and Module, the motherboard must provide the CAN termination. Most ESCON2 servo controllers have an internal
bus termination feature that you can activate with DIP switch 7 ("ON").

3.23

The default ID allocation scheme includes a functional part (Function Code) and a Node ID. This combination allows
you to distinguish between devices. The data link layer of CANopen can only transmit packages consisting of an 11 Bit
COB-ID, a remote transmission request bit (RTR) and 0-8 Byte of data.

Identifier allocation scheme

Bit 10 9 1 0
COB Identifier 1 2 3 4 1 2 3 4 5 6 7
Function Code Node ID
R >< >|

Figure 3-14 CAN communication | Default identifier allocation scheme

ESCONZ2 Servo Controllers Communication Guide

3-24 CCMC | 2024-12 | rel11981

CAN Communication
m axo n CANopen basics

This ID allocation scheme allows peer-to-peer communication between one master device and up to 127 slave
devices. It also supports the broadcast of non-confirmed NMT services, SYNC, and Node Guarding.

The predefined master/slave connection set supports:
* one emergency object,
+ one SDO,
» four Receive PDOs and four Transmit PDOs, and
+ the node guarding object.

Object Z;Ji:::iyc;n code Resulting COB-ID :::i:\;r;t;nication parameter
NMT 0000 0 -
SYNC 0001 128 (0080h) 1005h
EMERGENCY 129...255 (0071h-00FFh) 1014h
PDO1 (tx) 0011 385...511 (0181h-01FFh) 1800h
PDO1 (rx) 0100 513...639 (0201h-027Fh) 1400h
PDO2 (tx) 0101 641...8767 (0281h-02FFh) 1801h
PDO2 (rx) 0110 769..895 (0301h-037Fh) 1401h
PDO3 (tx) 0111 897...1023 (0381h-03FFh) 1802h
PDO3 (rx) 1000 1025...1151 (0401h-047Fh) 1402h
PDO4 (tx) 1001 1153...1279 (0481h-04FFh) 1803h
PDO4 (rx) 1010 1281...1407 (0501h-057Fh) 1403h
SDO1 (tx) 1011 1409...1535 (0581h-05FFh) 1200h
SDO1 (rx) 1100 1537...1663 (0601h-067Fh) 1200h
Table 3-25 CAN communication | Objects of the default connection set

3.2.4 Data Link Layer

The CAN data link layer is also standardized in ISO 11898. Its services are implemented in the Logical Link Control
(LLC) and Medium Access Control (MAC) sublayers of a CAN controller.

» The LLC provides acceptance filtering, overload notification and recovery management.

» The MAC is responsible for data encapsulation (decapsulation), frame coding (stuffing/destuffing), medium
access management, error detection, error signaling, acknowledgment, and serialization (deserialization).

A data frame is produced by a CAN node when the node intends to transmit data or if this is requested by another
node. Within one frame, up to 8 byte data can be transported.

Bus (S) Arbitration Control Data CRC ACK g Inter-
Idle E Field Field Field Field Field E mission
Bit 1 12 or 32 6 0..8*8 16 2 7 3

Figure 3-15 CAN communication | CAN data frame

» The data frame begins with a dominant Start of Frame (SOF) bit for hard synchronization of all nodes.
+ The SOF bit is followed by the Arbitration Field reflecting content and priority of the message.
* The next field — the Control Field — specifies mainly the number of bytes of data contained in the message.

» The Cyclic Redundancy Check (CRC) field is used to detect possible transmission errors. It consists of a 15-
bit CRC sequence completed by the recessive CRC delimiter bit.

» During the Acknowledgment (ACK) field, the transmitting node sends out a recessive bit. Any node that has
received an error-free frame acknowledges the correct reception of the frame by returning a dominant bit.

» The recessive bits of the End of Frame (EOF) terminate the Data Frame. Between two frames, a recessive 3-
bit Intermission field must be present.

ESCON2 Servo Controllers Communication Guide
CCMC | 2024-12 | rel11981 3-25

CAN Communication
CANopen basics m axo n

With ESCON2, only the standard frame format is supported.

| soF [11-Bitidentifier | RTR | 10E |r0[DLC 7/ T cre [Ack | EoF |

Arbitration Field Control Field Data Field

>l

Figure 3-16 CAN communication | Standard frame format

* The Identifier's (COB-ID) length in the standard format is 11 bit.

+ The Base ID is followed by the IDE (ldentifier Extension) bit transmitted dominant in the Standard Format
(within the Control Field).

» The control field in standard format includes the Data Length Code (DLC), the IDE bit, which is transmitted
dominant and the reserved bit r0, also transmitted dominant.

* The reserved bits must be sent dominant, but receivers accept dominant and recessive bits in all
combinations.

3.2.5 Configuration
Follow below step-by-step instructions for correct CAN communication setup.

3.2.51 Step 1: CANopen Master

Use one of the PC/CAN interface cards or PLCs listed below. For all of them, motion control libraries, examples and
documentation are available on the Internet (for URLs refer to =» Sources for additional information).

AOEECE Manufacturer / Contact Supported Product
Component

IXXAT Windows 32-Bit/64-Bit DLL
ixxat.de All offered CANopen cards Linux 32-Bit/64-Bit (Intel x86)
’ ’ Linux 32-Bit (ARM V7/V8)

Windows 32-Bit/64-Bit DLL
All offered CANopen cards Linux 32-Bit/64-Bit (Intel x86)
Linux 32-Bit (ARM V7/V8)

Kvaser
www.kvaser.com

PC/CAN L })

Interface Card [a] MTTCAN nVidia Jetson-TX2 Linux 64-Bit (ARM V8)
Natloqal e All offered CANopen cards Windows 32-Bit/64-Bit DLL
www.ni.com/can
piCAN2 Raspberry Pi 2/3 Linux 32-Bit (ARM V7/V8)
Ml . . All offered CANopen cards Windows 32-Bit/64-Bit DLL
www.vector-informatik.de
Beckhoff .

beckhoff.de All offered CANopen cards IEC 61131-3 Beckhoff Library
PLCs [b] Sieme.ns
www.siemens.com S7-300 with Helmholz CAN300 Delivered and supported by
Helmholz Master Helmholz

www.helmholz.de

ESCONZ2 Servo Controllers Communication Guide
3-26 CCMC | 2024-12 | rel11981

http://www.ixxat.de
http://www.ni.com/can
http://www.ni.com/can
http://www.vector-informatik.de
http://www.beckhoff.de
http://www.siemens.com/
http://www.helmholz.de

CAN Communication
m axo n CANopen basics

Recommended | yp 1\ ifacturer / Contact Supported Product
Component

Dedicated . . : :
motion control zub machine control AG All offered MACS controllers Commanding e.mdlconflgured directly
www.zub.ch by MACS application program

masters

[a] Interface driver of CANopen card must be installed
[b] All CAN products of other manufacturers may also be used. However, no motion control library is available
[c] maxon Motion Control Library will be part of a future release.

Table 3-26 CAN communication | Recommended components

3.2.5.2 Step 2: CAN Bus Wiring

The two-wire bus line must be terminated at both ends using a termination resistor of 120 Q. Twisting is recom-
mended, shielding is suggested (depending on EMC requirements). Find wiring details for the controller in the
Hardware Reference documentation for your maxon product.

CAN BUS LINE
CAN 9 Pin D-Sub (DIN41652) on PLC CAN RJ45 on PLC
or or
PC/CAN Interface PC/CAN Interface
Pin 7 “CAN_H” high bus line Pin 1 “CAN_H” high bus line
Pin 2 “CAN_L" low bus line Pin 2 “CAN_L" low bus line

Pin 3 “CAN_GND” Ground
Pin 7 “CAN_GND” Ground

Pin 5 “CAN_Shield” Cable shield Pin 6 “CAN_Shield” Cable shield

Pin 3 “CAN_GND” Ground

D-Sub Connector RJ45 Connector
Table 3-27 CAN communication | CAN bus wiring — CAN Bus Line

3.2.53 Step 3: CAN Node ID

Generally applicable Rules
* An unique Node ID must be defined for all devices within the CAN network.

* The Node ID results in the summed values of the stated DIP switches set to “1” (ON) or the connected input lines,
respectively. The address can be coded using binary code.

* By setting all stated DIP switches to “0” (OFF) — or by letting the input lines open, respectively — the Node IDs may
be configured by software (changing the object “Node ID”). In this case, the number of addressable nodes is 127.

ESCON2 Servo Controllers Communication Guide
CCMC | 2024-12 | rel11981 3-27

http://www.zub.ch

CAN Communication
CANopen basics

3.254 DIP Switch 1...5, Addresses 1...31

maxon

Switch Binary Code Valence DIP Switch
1 20 1
1 8
2 2! 2 ARAAAARAR ON
3 7 : AL o
4 3 8 HEHHHHEHH
2 ESCON2 Compact (factory setting)
5 24 16

Table 3-28 CAN communication | Node ID (1)

EXAMPLES

Use the following table as a (non-concluding) guide.

Switch

Setting ID
1 2 3 4 5
0 0 0 0 0 -
1 0 0 0 0 1
0 1 0 0 0 2
0 0 1 0 0 4
1 0 1 0 0 5
0 0 0 1 0 8
0 0 0 0 1 16
1 1 1 1 1 31

0 = Switch “OFF” 1 = Switch “ON”

Table 3-29 CAN communication | DIP switch 1...5 settings (example)

3-28

ESCONZ2 Servo Controllers Communication Guide
CCMC | 2024-12 | rel11981

maxon

CAN Communication
CANopen basics

3.255 Step 4: CAN Communication

For ESCONZ2, following CAN bit rates are available:

Object “CAN Bitrate” Bit rate Max. Line Length
(Index 0x2001, Subindex 0x00) according to [2]
0 1 MBit/s 25m
1 800 kBit/s 50 m
2 500 kBit/s 100 m
3 250 kBit/s 250 m
4 125 kBit/s 500 m
(5) reserved -
6 50 kBit/s 1000 m
7 20 kBit/s 2500 m
(8) not supported (10 kBit/s) -
9 automatic bit rate detection -

Table 3-30

Note

CAN communication | CAN communication — Bit rates and line lengths

« All devices within the CAN bus must use the same bit rate.

« If “automatic bit rate detection” is in use, at least one CANopen device (e.g. CANopen master) must be present in
the network with a fixed defined CAN bit rate configuration.
» The CANopen bus’ maximum bit rate depends on the cable length. Use «Motion Studio» to configure bit rate by
writing object “CAN bit rate” (Index 0x2001, Subindex 0x00).

3.2.5.6 Step 5: Activate changes

Activate changes by saving and resetting the ESCON2 using «Motion Studio».
1) Execute right-click function «Store Parameters»
2) Execute right-click function «Reset Controller»

3.25.7 Step 6: Communication test

Use a CAN monitor program (supported by PC’s or PLC CAN interface’s manufacturer) to check wiring and configura-
tion:

1) Reset all ESCON2 devices in the bus.
2) Upon power on, the ESCON2 will send a boot up message.

3) Make sure that all connected devices send a boot up message. If not, ESCON2 will produce a «CAN passive

mode error» (0x8120).

4) Boot up message:
COB-ID = 0x700 + Node ID
Data [0] = 0x00

ESCON2 Servo Controllers Communication Guide
CCMC | 2024-12 | rel11981

3-29

CAN Communication
CANopen application layer m axo n

3.3 CANopen application layer
3.3.1 Object dictionary
The most significant part of a CANopen device is the Object Dictionary. It is essentially a grouping of objects accessi-
ble via the network in an ordered, predefined fashion. Each object within the dictionary is addressed using a 16-bit
index and a 8-bit subindex. The overall layout of the standard Object Dictionary conforms to other industrial field bus
concepts.
Index Variable accessed
0x0000 Reserved
0x0001...0x025F Data types (not supported on ESCONZ2)
0x0260...0x0FFF Reserved
0x1000...0x1FFF Communication Profile Area (= [3])
0x2000...0x5FFF Manufacturer-specific Profile Area (maxon)
0x6000...0x9FFF Standardized profile area 1st...8th logical device
0xA000...0xAFFF Standardized network variable area (not supported on ESCON2)
0xB000...0xBFFF Standardized system variable area (not supported on ESCONZ2)
0xCO000...0xFFFF Reserved (not supported on ESCON2)
Table 3-31 CAN communication | Object dictionary layout
A 16-bit index is used to address all entries within the Object Dictionary. In case of a simple variable, it references the
value of this variable directly. In case of records and arrays however, the index addresses the entire data structure.
The subindex permits individual elements of a data structure to be accessed via the network.
» For single Object Dictionary entries (such as UNSIGNEDS8, BOOLEAN, INTEGER32, etc.), the subindex
value is always zero.
» For complex Object Dictionary entries (such as arrays or records with multiple data fields), the subindex refe-
rences fields within a data structure pointed to by the main index.
An example: A receive PDO, the data structure at index 1400h defines the communication parameters for that
module. This structure contains fields or the COB-ID and the transmission type. The subindex concept can be used to
access these individual fields as shown below.
Index Subindex Variable accessed Data Type
1400h 0 Number of entries UNSIGNEDS
1400h 1 COB-ID used by RxPDO 1 UNSIGNED32
1400h 2 Transmission type RxPDO 1 UNSIGNEDS8
Table 3-32 CAN communication | Object dictionary entry
ESCONZ2 Servo Controllers Communication Guide
3-30

CCMC | 2024-12 | rel11981

CAN Communication
m axo n CANopen application layer

3.3.2 Communication objects
CANopen communication objects are described by the services and protocols. They are classified as follows:
» The real-time data transfer is performed by means of process data objects.
+ With service data objects, read/write access to entries of a device object dictionary is provided.
» Special function objects provide application-specific network synchronization and emergency messages.

* Network management objects provide services for network initialization, error control and device status cont-
rol.

Communication objects

Process Data Objects (PDO)
Service Data Objects (SDO)

Special Function Objects Time Stamp Objects (not used on ESCON2)
Synchronization Objects (SYNC) Emergency Objects (EMCY)
NMT Message

Network Management Objects

Node Guarding Object

Table 3-33 CAN communication | Communication objects

3.3.3 PDO Communication

Process Data Objects (PDOs) — unconfirmed services containing no protocol overhead — are used for fast data trans-
mission (real-time data) with a high priority. Consequently, they represent an extremely fast and flexible method to
transmit data from one node to any number of other nodes. PDOs may contain up to 8 data bytes that can be specifi-
cally compiled and confirmed to suit own requirements. Each PDO has a unique identifier and is transmitted by only
one node, but it can be received by more than one (producer/ consumer communication).

PDO Consumer PDO Consumer

PDO B T

A4

PDO Producer PDO Consumer

Figure 3-17 CAN communication | Process Data Object (PDO)

There are two PDO services:
» The Write PDO (RxPDO) is mapped to a single CAN Data frame.

* The Read PDO (TxPDO) is mapped to CAN Remote Frame, which will be responded by the corresponding
CAN Data Frame.

There are two types of PDOs: transmit PDOs (TxPDOs) and receive PDOs (RxPDOs). Read PDOs are optional and
depend on the device capability. The complete data field of up to 8 byte may contain process data. Number and length
of a device’s PDOs are application-specific and must be specified in the device profile.

The number of supported PDOs depends on the actually used CANopen device. Generally, up to 512 RxPDOs and
512 TxPDOs are possible in a CANopen network. Typically, most devices support 4 RxPDOs and 4 TxPDOs. The
actual number of available PDOs is indicated by the CANopen device's object dictionary and described by its firmware
specification (such as the separately available documents = «ESCON2 Firmware Specification» [13]).

The PDOs correspond to entries in the Object Dictionary and serve as an interface to objects linked to real time pro-
cess data of the master's application code. The application objects' data type and their mapping into the master's
PDOs must match with the slave's PDO mapping. The PDO data exchange parameters, PDO structure, and mapped
objects are defined in the object entries of 0x1400, 0x1600 (for RxPDO 1), and 0x1800, 0x1AQ0 (for TxPDO 1).

ESCON2 Servo Controllers Communication Guide
CCMC | 2024-12 | rel11981 3-31

CAN Communication

Producer Consumer(s)
Write PDO
. >
Request > A%’g}gitt'so" > Indication(s)
0<1<8byte
Read PDO
. >
Response > A%ag}gactt';)" > Confirmation(s)
—
0<1<8byte

Figure 3-18 CAN communication | PDO protocol

The CANopen communication profile distinguishes three message triggering modes:

a) Event-driven
Message transmission is triggered by the occurrence of an object-specific event specified in the device
profile.

b) Synchronized
Synchronous PDOs are triggered by the expiration of a specified transmission period synchronized by the
reception of the SYNC object.

Internal
Event &
7
a) Event-driven Producer > > Consumer(s)
i Sync S
b) Synchronized H 7«
(cyclic, acyclic) Produgsy > > Consumer(s)

Figure 3-19 CAN communication | PDO communication modes

ESCONZ2 Servo Controllers Communication Guide
3-32 CCMC | 2024-12 | rel11981

CAN Communication
m axo n CANopen application layer

3.3.31 PDO mapping

The Object Dictionary for each PDO describes the default application object mapping and the supported transmission
mode. PDO identifiers can have high priority to ensure a short response time. PDO transmission is not confirmed.
PDO mapping defines the application objects that will be transmitted within a PDO. It specifies the sequence and
length of the mapped application objects. A device that supports variable mapping of PDOs must enable this during
the «Pre-Operational» state refer to =» Figure 3-31. If dynamic mapping is supported during the "Operational” state,
the SDO client is responsible for data consistency.

Index Subindex Functionality
0x1A00 0x00 Number of mapped objects: 3
0x1A00 0x01 Mapped object 1: 0x6041 0x00 16
—\—1— 0x1A00 0x02 Mapped object 2: 0x6064 0x00 32 TxPDO1
———— 0x1A00 0x03 Mapped object 3: 0x6077 0x00 16

> 0x6041 0x00 Statusword

> 0x6064 0x00 Position actual value

> 0x6077 0x00 Torque actual value

Figure 3-20 CAN communication | PDO mapping example

3.3.3.2 PDO configuration
For PDO Configuration, the device must be in state «Pre-Operational» refer to = Figure 3-31!

The following section explains how to implement the configuration step-by-step. Each step includes an example using
"PDO 1" and "Node 1."

Step 1: Configure COB-ID

The default COB-ID value depends on the Node ID (Default COB-ID = PDO-Offset + Node ID). Alternatively, you can
set the COB-ID within a defined range. The table below shows all default COB-IDs and their ranges.

Object Index Subindex COB?ﬁ;a;:: o 1
TxPDO 1 0x1800 0x01 0x181
TxPDO 2 0x1801 0x01 0x281
TxPDO 3 0x1802 0x01 0x381
TxPDO 4 0x1803 0x01 0x481
RxPDO 1 0x1400 0x01 0x201
RxPDO 2 0x1401 0x01 0x301
RxPDO 3 0x1402 0x01 0x401
RxPDO 4 0x1403 0x01 0x501
Table 3-34 CAN communication | COB-IDs — Default values and value range

ESCON2 Servo Controllers Communication Guide
CCMC | 2024-12 | rel11981 3-33

CAN Communication
CANopen application layer m axo n

Step 2: Set tansmission type

Type 0x01 TxPDOs Data is sampled and transmitted after the occurrence of the SYNC.
RxPDOs Data is passed on to the ESCON2 and processed after the occurrence of the SYNC.

Data is sampled and transmitted after one mapped object of the PDO has changed

Type OxFF TxPDOs its value and the configured “Inhibit time” has been exceeded.

Data is transmitted (by the master to the ESCON2) asynchronously and then directly

RxPDOs processed by the ESCON2.

Object > «Transmission type RxPDO 1» (Index 0x1400, Subindex 0x02)

Example: /e = 0x01

Step 3: Number of mapped application objects

Disable the PDO by writing a value of “0” (zero) to the subindex 0x00 holding «Number of mapped objects in...».

Object = «Number of mapped objects in RxPDO 1» (Index 0x1600, Subindex 0x00)

Example: \/lue = 0x00 (i.e. this PDO is disabled)

Object = «Number of mapped objects in TxPDO 1» (Index 0x1AQ00, Subindex 0x00)

Example: 1 lue = 0x00 (i.e. this PDO is disabled)

Step 4: Mapping objects

Set value from an object.

Object1 » «18t mapped object in RxPDO 1» (Index 0x1600, Subindex 0x01)
Example: Object2 » «2nd mapped object in RxPDO 1» (Index 0x1600, Subindex 0x02)
Object3 - «3™ mapped object in RXPDO 1» (Index 0x1600, Subindex 0x03)

RxPDO 1 # Mapped Object

1 Object_1 = 0x60400010 - Controlword (16 Bit)
2 Object_2 = 0x606C0000 - Velocity Actual Value (32 Bit)
3 Object_3 = 0x31820110 - Analog output 1 value (16 Bit)

Note

For details on all mappable objects
=2>ESCON2 Firmware Specification [13], chapters «Receive PDO... parameter» and « Transmit PDO... parameter».

Step 5: Number of mapped application objects

Enable PDO by writing the value of the number of objects in object «Number of mapped objects in...».

Example: Object = «Number of mapped objects in RxPDO 1» (Index 0x1600, Subindex 0x00)

Example: Object = «Number of mapped objects in TxPDO 1» (Index 0x1A00, Subindex 0x00)

Step 6: Activate changes

Changes will directly be activated. Execute right-click function “Store Parameters” for permanent saving

3-34

ESCONZ2 Servo Controllers Communication Guide
CCMC | 2024-12 | rel11981

CAN Communication
m axo n CANopen application layer

3.3.4 SDO Communication

Service Data Objects (SDOs) provide read and write access to entries in a device's Object Dictionary. An SDO is map-
ped to two CAN Data Frames with different identifiers, as communication is confirmed. Using an SDO, you can esta-
blish a peer-to-peer communication channel between two devices. The owner of the accessed Object Dictionary is the
SDO server. A device may support multiple SDOs, with one supported SDO as the default and mandatory case.

Peer-to-Peer Communication
SDO Client Node n-1

SDO 1

A4

Node n SDO Server

Figure 3-21 CAN communication | Service Data Object (SDO)

The Client/Server Command Specifier contains the following information:
* download or upload
* request or response
» segmented or expedited transfer
* number of data bytes
* end indicator
+ alternating toggle bit for each subsequent segment

SDOs are defined by the communication parameter. The default Server SDO (S_SDO) is defined in entry "1200h." In
a CANopen network, you can use up to 256 SDO channels, each requiring two CAN identifiers.

Byte 0 1...3: Multiplexor 4...7: Data
Command 16-Bit 8-Bit 1...4 Byte
Specifier Index Subindex Parameter Data
Index | Subindex | Description | Value
Object Dictionary

Figure 3-22 CAN communication | Object dictionary access

Two types of transfer are supported:

* Normal transfer: A segmented SDO protocol used to read or write objects larger than 4 bytes. The transfer is
divided into multiple SDO segments (CAN frames).

» Expedited transfer: A non-segmented SDO protocol used for objects smaller than 4 bytes.

Most ESCON2 Object Dictionary entries can be read or written using the expedited transfer (non-segmented SDO
protocol). Only the Serial Number Complete and the Data Recorder Buffer require the segmented SDO protocol
(normal transfer) for reading. Therefore, only the non-segmented SDO protocol is explained here. For details on the
segmented protocol (normal transfer), see the CANopen specification (CiA 301) = [3].

ESCON2 Servo Controllers Communication Guide
CCMC | 2024-12 | rel11981 3-35

CAN Communication

CANopen application layer m axo n

3.3.4.1 Expedited SDO protocol
In the following description, the terms are used as follows:

«Client» refers to the CANopen master that reads or writes an object.

«Server» refers to the ESCON2 (or any other CANopen slave) that responds to the request.

READING OBJECT (= SDO UPLOAD)

Client => COB-D Data Data Data Data Data Data Data Data
Server) [Byte 0] | [Byte 1] [Byte 2] [Byte 3] | [Byte 4] | [Byte 5] | [Byte 6] | [Byte 7]
0x600 + Index Index Sub-
Node-ID LowByte | HighByte Index Reserved
——
[Btz | Bit6 [Bit5 | Bit4 | Bit3 [Bit2 | Bit1 | Bit0 |
o 1+ [o | x | x | x | x | x |
Server => COB-ID Data Data Data Data Data Data Data Data
Client [Byte 0] | [Byte 1] [Byte 2] [Byte 3] [Byte 4] | [Byte 5] | [Byte 6] | [Byte 7]
0x580 + Index Index Sub- Object Object Object | Object
Node-ID LowByte | HighByte Index Byte 0 Byte 1 Byte 2 Byte 3
| Btz [Bit6 [Bit5 [Bit4 [Bit3d [Bit2 [Bit1 [Bit0 |
[o [1 | o [x] n [e | s |
Figure 3-23 CAN communication | SDO upload protocol (expedited transfer) — Read
WRITING OBJECT (= SDO DOWNLOAD)
Client => COB-ID Data Data Data Data Data Data Data Data
Server [Byte 0] | [Byte 1] [Byte 2] [Byte 3] | [Byte 4] | [Byte 5] | [Byte 6] | [Byte 7]
0x600 + Index Index Sub- Object Object Object | Object
Node-ID LowByte | HighByte Index Byte 0 Byte 1 Byte 2 Byte 3
[Bit7 | Bit6é | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 [Bito |
[o [o | 1 | x | n e | s |
Server=> | ~4p 0 Data Data Data Data Data Data Data Data
Client [Byte 0] | [Byte 1] [Byte 2] [Byte 3] | [Byte 4] | [Byte 5] | [Byte 6] | [Byte 7]
0x580 + Index Index Sub- Reserved
| Node-ID LowByte | HighByte Index
[Bit7 [Bit6 | Bit5 | Bit4 | Bit3 | Btz | Bit1 | Bit0 |
\ 0 | 1 \ 1 | X \ X | X | X | X
Figure 3-24 CAN communication | SDO upload protocol (expedited transfer) — Write
ABORT SDO PROTOCOL (IN CASE OF ERROR)
Server => | ~op D Data Data Data Data Data Data Data Data
Client [Byte 0] | [Byte 1] [Byte 2] [Byte 3] | [Byte4] | [Byte 5] | [Byte 6] | [Byte 7]
0x580 + Index Index Sub-
Node-ID LowByte | HighByte Index Abort Code
—
[Bit7 [Bit6é | Bits | Bit4 | Bit3a | Bit2 | Bit1 | Bit0 |
[1+ [o [o | x [x [x | x [x |
Figure 3-25 CAN communication | SDO upload protocol (expedited transfer) — Abort
Note
For detailed descriptions of «Abort Codes» »«ESCON2 Firmware Specification» [13]
ESCONZ2 Servo Controllers Communication Guide
3-36

CCMC | 2024-12 | rel11981

maxon

CAN Communication
CANopen application layer

Legend Data [Byte 0]
ccs client command specifier (Bit 7...5)
Read Object: ccs = 2 / Write Object: ccs = 1
scs server command specifier (Bit 7...5)
Read Object: scs = 2 / Write Object: scs =3
cs command specifier (Bit 7...5)
SDO abort transfer: cs = 4
X not used (always “0”)
Only valid if e = 1 and s = 1, otherwise 0. If valid, it indicates the number of bytes in Data [Byte 4...7] that do
n . .
not contain data. Bytes [8 — n, 7] do not contain segment data.
e Transfer type (0: normal transfer; 1: expedited transfer)
s Size indicator (0: data set size is not indicated; 1: data set size is indicated)
Table 3-35 CAN communication | SDO transfer protocol — Legend

OVERVIEW ON IMPORTANT COMMAND SPECIFIER ([BYTE 0] - BIT 7...5)

ata [Byte 0] Receiving Data [Byte 0]
40 4F

1 Byte
Reading
Object ZENE

3 Byte

1 Byte
Writing 2 Byte
Object 4 Byte

not defined

Table 3-36

3.3.4.2

SDO communication examples

40

40
2F (or 22)
2B (or 22)
23 (or 22)

22

CAN communication | Command specifier (overview)

Read «Statusword» (Index 0x6041, Subindex 0x00) from node 1:

CANopen Sending SDO Frame

COD-ID 0x601 0x600 + Node ID

Data [0] 0x40 ccs =2

Data [1] 0x41 Index LowByte
Data[2] 0x60 Index HighByte
Data [3] 0x00 Subindex
Data[4] 0x00 reserved
Data[5] 0x00 reserved

Data [6] 0x00 reserved
Data[7] 0x00 reserved

Table 3-37

4B
43
60
60
60
60

CANopen Receiving SDO Frame

COD-ID
Data [0]
Data [1]
Data [2]
Data [3]
Data [4]
Data [5]
Data [6]
Data [7]

0x581
0x4B
0x41
0x60
0x00
0x08
0x00
0x00
0x00

0x580 + Node ID
scs=2,n=2,e=1,s=1
Index LowByte

Index HighByte

Subindex

Data [Byte 0]

Data [Byte 1]

reserved

reserved

Statusword: 0x0008 = 8

CAN communication | «<kExample Read Statusword»

ESCON2 Servo Controllers Communication Guide
CCMC | 2024-12 | rel11981

3-37

CAN Communication

Write «Controlword» (Index 0x6040, Subindex 0x00: Data 0x000F) to node 1:

CANopen Sending SDO Frame CANopen Receiving SDO Frame

COD-ID 0x601 0x600 + Node ID COD-ID 0x581 0x580 + Node ID
Data [0] 0x22 ccs=1,n=0,e=1,s=0 Data [0] 0x60 scs =3

Data[1] 0x40 Index LowByte Data[1] 0x40 Index LowByte
Data[2] 0x60 Index HighByte Data[2] 0x60 Index HighByte
Data[3] 0x00 Subindex Data [3] 0x00 Subindex
Data[4] OxOF Data [Byte 0] Data [4] 0x00 reserved
Data[5] 0x00 Data [Byte 1] Data[5] 0x00 reserved

Data [6] 0x00 reserved Data [6] 0x00 reserved
Data[7] 0x00 reserved Data[7] 0x00 reserved

Controlword: new value

Table 3-38 CAN communication | Example «Write Controlword»

Try to read the content of an object's subindex which does not exist (Index 0x2000, Subindex 0x08) from node 1:

CANopen Sending SDO Frame CANopen Receiving SDO Frame

COD-ID 0x601 0x600 + Node ID COD-ID 0x581 0x580 + Node ID
Data [0] 0x40 ccs =2 Data [0] 0x80 scs =4

Data[1] 0x00 Index LowByte Data[1] 0x00 Index LowByte
Data[2] 0x20 Index HighByte Data[2] 0x20 Index HighByte
Data[3] 0x08 Subindex Data[3] 0x08 Subindex

Data [4] 0x00 reserved Data [4] Ox11 Abort Code [Byte 0]
Data [5] 0x00 reserved Data [5] 0x00 Abort Code [Byte 1]
Data [6] 0x00 reserved Data [6] 0x09 Abort Code [Byte 2]
Data[7] 0x00 reserved Data[7] 0x06 Abort Code [Byte 3]

Abort code: 0x06090011 - the last read or write
command had a wrong object subindex.

Table 3-39 CAN communication | Example «Read non-existent subindex»

Read «Velocity actual value» (Index 0x606C, Subindex 0x00) from node 1:

CANopen Sending SDO Frame CANopen Receiving SDO Frame

COD-ID 0x601 0x600 + Node ID COD-ID 0x581 0x580 + Node ID

Data [0] 0x40 ccs =2 Data [0] 0x43 scs=2,n=0,e=1,s=1
Data[1] 0x6C Index LowByte Data[1] 0x6C Index LowByte

Data[2] 0x60 Index HighByte Data[2] 0x60 Index HighByte

Data[3] 0x00 Subindex Data[3] 0x00 Subindex

Data[4] 0x00 reserved Data[4] OxCA Data [Byte 0]

Data[5] 0x00 reserved Data[5] 0x04 Data [Byte 1]

Data [6] 0x00 reserved Data [6] 0x00 Data [Byte 2]

Data[7] 0x00 reserved Data[7] 0x00 Data [Byte 3]

Actual velocity value: 0x000004CA = 1226 rpm

Table 3-40 CAN communication | Example «Read velocity actual value»

ESCONZ2 Servo Controllers Communication Guide
3-38 CCMC | 2024-12 | rel11981

maxon

CAN Communication
CANopen application layer

Write «Target velocity» (Index 0x60FF, Subindex 0x00: Data 0x0O00008AE — 2222dec) to node 1:

CANopen Receiving SDO Frame

CANopen Sending SDO Frame

COD-ID 0x601 0x600 + Node ID COD-ID 0x581 0x580 + Node ID
Data [0] 0x22 ccs=1,n=0,e=1,s=0 Data [0] 0x60 scs =3

Data [1] OxFF Index LowByte Data[1] OxFF Index LowByte
Data[2] 0x60 Index HighByte Data[2] 0x60 Index HighByte
Data [3] 0x00 Subindex Data [3] 0x00 Subindex

Data[4] OxAE Data [Byte 0] Data [4] 0x00 Abort Code [Byte 0]
Data [5] 0x08 Data [Byte 1] Data [5] 0x00 Abort Code [Byte 1]
Data [6] 0x00 Data [Byte 2] Data [6] 0x00 Abort Code [Byte 2]
Data[7] 0x00 Data [Byte 3] Data[7] 0x00 Abort Code [Byte 3]

Target velocity: new value

Table 3-41 CAN communication | Example «Write Target velocity»

3.3.5 SYNC Object
The SYNC producer provides the synchronization signal for the SYNC consumers.

When the SYNC consumers receive the signal, they start their synchronous tasks. Generally, the fixed transmission
time of synchronous PDO messages, combined with the periodic transmission of the SYNC Object, ensures that sen-
sors can sample process variables and actuators can perform coordinated actuation. The identifier of the SYNC
Object is at index "1005h."

SYNC Producer

SYNC

] oaia]
A4 N J/

Non-SYNC
SYNC Consumer SYNC Consumer Consumer SYNC Consumer
Figure 3-26 CAN communication | Synchronization object (SYNC)

Synchronous transmission of a PDO means that the transmission is fixed in time with respect to the transmission of
the SYNC Object. The synchronous PDO is transmitted within a given time window “synchronous window length” with
respect to the SYNC transmission and, at the most, once for every period of the SYNC. The time period between
SYNC objects is specified by the parameter “communication cycle period”.

CANopen distinguishes the following transmission modes:
* synchronous transmission
» asynchronous transmission

Synchronous PDOs are transmitted within the synchronous window after the SYNC object. The priority of synchro-
nous PDOs is higher than the priority of asynchronous PDOs.

Asynchronous PDOs and SDOs can be transmitted at every time with respect to their priority. Hence, they may also
be transmitted within the synchronous window.

ESCON2 Servo Controllers Communication Guide
CCMC | 2024-12 | rel11981 3-39

CAN Communication
CANopen application layer m axo n

Legend
/T\ synchronous PDO A asynchronous PDO

SYNC SYNC SYNC SYNC SYNC SYNC
N N N N N N
N N N N N N
AN AN

N T
> Time

Figure 3-27 CAN communication | Synchronous PDO

3.3.6 EMCY Object

Emergency messages are triggered by a fatal internal error in a device. The device transmits these messages to other
devices with high priority, making them suitable for interrupt-type error alerts.

An Emergency Telegram can be sent only once per "error event." Emergency messages must not be repeated. No
further emergency messages are transmitted unless a new error occurs on a CANopen device. The error register and
additional device-specific information are specified in the device profiles using emergency error codes, as defined in
the CANopen communication Profile = [3].

Emergency
Consumer

EMCY ™M EMCY

Emergency Emergency Emergency Emergency
Producer 1 Producer 2 Producer 3 Producer 4

Figure 3-28 CAN communication | Emergency service (EMCY)

Byte 0 1 2 3 | 4 \ 5 \ 6 | 7
Description Error code Error register Not used (always «0»)
Table 3-42 CAN communication | Emergency message frame

3.3.7 Network management

The CANopen network management is node-oriented and follows a master/slave structure. It requires one device in
the network that fulfils the function of the NMT Master. The other nodes are NMT Slaves.

Network management provides the following functionality groups:
» Device Control Services initialize NMT slaves that participate in the distributed application.
» Error Control Services monitor the communication status of nodes and the network.
» Configuration Control Services upload and download configuration data to and from a network device.

A NMT Slave represents that part of a node, which is responsible for the node’s NMT functionality. It is uniquely iden-
tified by its Node-ID.

ESCONZ2 Servo Controllers Communication Guide
3-40 CCMC | 2024-12 | rel11981

maxon

NMT Master
NMT
[0 |
\ 4 N y \J/
NMT Slave NMT Slave NMT Slave NMT Slave

Figure 3-29 CAN communication | Network management (NMT)

CAN Communication
CANopen application layer

The CANopen NMT Slave devices implement a state machine that automatically brings every device to «Pre-Operati-

onal» state, once powered and initialized.

In «Pre-Operational» state, the node may be configured and parameterized via SDO (e.g. using a configuration tool),
PDO communication is not permitted. The NMT Master may switch from «Pre-Operational» to «Operational», and vice

versa.

In «Operational» state, PDO transfer is permitted. By switching a device into «Stopped» state it will be forced to stop
PDO and SDO communication. Furthermore, «Operational» can be used to achieve certain application behavior. The
behavior's definition is part of the device profile’s scope. In «Operational», all communication objects are active.
Object Dictionary access via SDO is possible. However, implementation aspects or the application state machine may
require to switching off or to read only certain application objects while being operational (e.g. an object may contain
the application program, which cannot be changed during execution).

Initialization

~ —
o]

23 Stopped
45
Operational |, |

N

Figure 3-30 CAN communication | NMT slave states

ESCON2 Servo Controllers Communication Guide
CCMC | 2024-12 | rel11981

3-41

CAN Communication
CANopen application layer m axo n

3.3.71 NMT Services
CANopen Network Management provides the following services, which can be distinguished by the Command

Specifier (CS).
Service [a] Transi | NMT State after | Remote Functionalit
-tion | Command [c] y
—[b] 0 Pre-Operational | FALSE | Communication:
+ Service Data Objects (SDO) Protocol
Enter + Emergency Objects

3.6 Pre-Operational | FALSE | . Network Management (NMT) Protocol

+ Lifeguarding (Heartbeating)

Calculates SDO COB-IDs.

Setup Dynamic PDO-Mapping and calculates PDO
COB-IDs.

Communication:

Reset 189 Initialization FALSE |° While initialization is active, Layer setting services
communication » (Pre-Operational) (LSS) communication is active. If no valid Node ID is
configured, the device stays in initialization until a

valid Node ID is set.
» Upon completion, a boot-up message will be sent to
the CAN Bus.

Generates a general reset of the ESCON2 software
having the same effect as turning off and on the supply
Initialization voltage. Not saved parameters will be overwritten with
Reset Node 1,8,9 (Pre-Operational) FALSE | the values that have been saved in the device's

persistent memory (e.g. Flash, EEPROM) by
processing the «Store parameters» function of object
0x1010 before.

Communication:

+ Service Data Objects (SDO) Protocol
Start Remote 25 Operational TRUE * Process Data ijects (PDO) Protocol
Node + Emergency Objects

» Network Management (NMT) Protocol
+ Lifeguarding (Heartbeating)

Pre-Operational

Communication:

» Network Management (NMT) Protocol
 Layer setting services (LSS)

+ Lifeguarding (Heartbeating)

Stop Remote

Node 4,7 Stopped FALSE

[a] The command may be sent with Network Management (NMT) protocol.

[b] The ESCON2 automatically generates the transition after initialization is completed.
A Boot-Up message is being sent.

[c] Remote flag Bit 9 of the Statusword.

Table 3-43 CAN communication | NMT slave (commands, transitions, and states)

The communication object possesses the identifier (=0) and consists of two bytes. The Node-ID defines the destina-
tion of the message. If zero, the protocol addresses all NMT Slaves.

Transitions (Node Start / Stop / State)

NMT Master NMT Slave(s)
Byte 0 Byte 1
>
Request CS Node-ID > Indication(s)
COD-ID =0

Figure 3-31 CAN communication | NMT object

ESCONZ2 Servo Controllers Communication Guide
3-42 CCMC | 2024-12 | rel11981

maxon

CAN Communication
CANopen application layer

CS Node-ID . .
Protocol COB-ID (Byte 0) (Byte 1) Functionality
0 0x80 0 (all) All CANopen node.s (ESCONZ2 devices) will enter NMT
Enter State «Pre-Operational».
Pre-Operational 0 080 . The CANopen node (ESCON2 device) with Node-ID “n”
will enter NMT State «Pre-Operational».
0 0x82 0 (all) All CAquen nodes (ESCON2 devices) will reset the
Reset communication.
communication The CANopen node (ESCON2 device) with Node-ID “n”
0 0x82 n . L
will reset the communication.
0 0x81 0 (all) All CANopen nodes (ESCON2 devices) will reset.
Reset Node 0 OxB1 N The CANopen node (ESCON2 device) with Node-ID “n”
will reset.
0 0X01 0 (all) All CANopen r)odes (ESCONZ2 devices) will enter NMT
Start Remote State «Operational».
Node 0 0x01 N The CANopen node (ESCON2 device) with Node-ID “n”
will enter NMT State «Operational».
0 0X02 0 (all) All CANopen nodes (ESCON2 devices) will enter NMT
Stop Remote State «Stopped».
Node 0 O0x02 N The CANopen node (ESCON2 device) with Node-ID “n”
will enter NMT State «Stopped».
Table 3-44 CAN communication | NMT protocols
3.3.7.2 Heartbeat Protocol

The ESCON2 transmits a cyclic heartbeat message if the Heartbeat Protocol is enabled (Heartbeat Producer Time 0 =
Disabled / greater than 0 = enabled). The Heartbeat Consumer guards receipt of the Heartbeat within the Heartbeat
Consumer Time. If the Heartbeat Producer Time is configured in ESCONZ2, it will start immediately with the Heartbeat

Protocol.

Remark

If «Automatic bite rate detection» is activated (Object 0x2001), a couple of frames must be sent first by the Master
System for the ESCONZ2 to synchronize to this bit rate. Only then ESCONZ2 will start to send the Heartbeat Signal.

ESCON2 Servo Controllers Communication Guide
CCMC | 2024-12 | rel11981

3-43

CAN Communication

Master(s) e.g. PLC ESCON2
COB-ID Data’'

NMT State:
Boot-up

|
I
|
I
I
|
]
|
=
=]
A

0x700+Nodeld | 0x00 —p—————

Heartbeat Producer

Heartbeat Consumer Time? (Object 0x1017)

Time? (Object 0x1016) COB-ID Data’

——————— < ndication 0x700+Nodeld | Ox7F |« ———-

NMT State:
Pre-Operational

Heartbeat Producer

Heartbeat Consumer Time? (Object 0x1017)

Time? (Object 0x1016) COB-ID Data’

«—indication

NMT State:
Operational

Heartbeat Producer
Time? (Object 0x1017)

0x700+Nodeld | 0x05 |« S SR

A

Heartbeat Consumer
Time? (Object 0x1016) COB-ID Data?

o T <ndication le 10x700+Nodeld | 0x04 fa——-¥----- e Bdenid
Stopped

Heartbeat Producer
Heartbeat Consumer 2 -
Time? (Object 0x1016) Time* (Object 0x1017)

ESCON2 State unknown

Heartbeat Event®

Legend: 1) Data Field / 2) Heartbeat Producer and Heartbeat Consumer Time / 3) Hearbeat Event

Figure 3-32 CAN communication | Heartbeat protocol — Timing diagram

DATA FIELD
Holds the NMT state. Therefore the following values for the data field are possible:

Value ESCON2 NMT state
0x00 Bootup
0x04 Stopped
0x05 Operational
Ox7F Pre-Operational
Table 3-45 CAN communication | Heartbeat protocol — Data field

HEARTBEAT PRODUCER TIME AND HEARTBEAT CONSUMER TIME

The Heartbeat Consumer Time must be longer than the Heartbeat Producer Time because of generation, sending and
indication time (HeartbeatConsumerTime > HeartbeatProducerTime + 20ms). Each indication of the Master resets
the Heartbeat Consumer Time.

HEARTBEAT EVENT

If ESCONZ2 is in an unknown state (e.g. supply voltage failure), the Heartbeat Protocol cannot be sent to the Master.
The Master will recognize this event upon elapsed Heartbeat Consumer Time and will generate a Heartbeat Event.

ESCONZ2 Servo Controllers Communication Guide
3-44 CCMC | 2024-12 | rel11981

CAN Communication
m axo n Layer setting services (LSS)

3.4

Layer setting services (LSS)

Using Layer Setting Services (LSS) and protocols, an LSS slave can be configured over the CAN network without
using DIP switches to set the Node-ID and bit timing parameters.

The CANopen device that configures other devices via the CANopen network is called the "LSS Master." There must
be only one active LSS Master in a network. The CANopen device that is configured by the LSS Master is called the
"LSS Slave."

An LSS Slave has a unique LSS address, at least network-wide, which includes the sub-objects "Vendor ID," "Product
Code," "Revision Number," and "Serial Number" of the CANopen "ldentity Object" 0x1018 (see ESCON2 Firmware
Specification). No other LSS Slaves in the network should have the same LSS address.

This unique LSS address allows an individual CANopen device to be identified in the network. The Node-ID is valid if
it is in the range 0x01 to Ox7F, while the value OxFF identifies unconfigured CANopen devices.

LSS protocols manage communication between the LSS Master and LSS Slaves and use only two COB-IDs:
* LSS Master message to LSS Slaves (COB-ID 0x7E5)
+ LSS Slave message to the LSS Master (COB-ID 0x7E4)

Layer Setting Services are accessible only in the "Stopped" state of the NMT Slave. To enter the Stopped state, use
"Stop Remote Node" (see "NMT Services" on page 3-31).

3.41 Overview

The table below represents an overview on the LSS commands including details on whether they may be used in
states «Waiting» and «Configuration». To change the LSS state, the LSS commands =»Switch state global or
= Switch state selective may be used.

Coml_n_and LSS Command LSS_S_tate LS_S Statg
Specifier Waiting Configuration
0x04 =>»Switch state global yes yes
0x40...0x43 = Switch state selective yes no
0x11 = Configure «Node-ID» no yes
0x13 =>Configure bit timing parameters no yes
0x15 =>Activate bit timing parameters no yes
0x17 =>»Store configuration protocol no yes
0x5A = Inquire identity «Vendor ID» no yes
0x5B =>Inquire identity «Product code» no yes
0x5C =>Inquire identity «Revision number» no yes
0x5D =>Inquire identity «Serial number» no yes
Ox5E =>Inquire identity «Node-ID» no yes
0x46...0x4B =>Identify remote slave yes yes
0x4C =>»Identify non-configured remote slave yes yes
Table 3-46 CAN communication | LSS commands overview

ESCON2 Servo Controllers Communication Guide
CCMC | 2024-12 | rel11981 3-45

CAN Communication
Layer setting services (LSS)

3.4.2 LSS commands

3.4.21

Switch state global

maxon

Changes the state of all connected LSS Slaves to «Configuration» or back to «Waiting». Thereby, particular LSS com-
mands are not permitted (=»Table 3-46).

cs 0x04

0

mode 1

LSS Master
CAN ID = 0x7E5

LSS command specifier 4 or switch state global

switch to LSS state waiting
switch to LSS state configuration

LSS Slave

—

cs
0x04 | mode

)
reserved
1

—

Figure 3-33

3.4.2.2

Switch state selective

Changes the state of one LSS Slave from «Waiting» to «Configuration».

The following LSS command specifiers are used:

¢ 0x40 to submit the «Vendor ID»

* 0x41 to submit the «Product code»

* 0x42 to submit the «Revision number»
* 0x43 to submit the «Serial number» («ldentity object» 0x1018; *ESCON2 Firmware Specification)
Then, the single addressed LSS Slave changes to configuration state and answers by sending a command specifier

0x44 response.

CAN communication | LSS commands switch state global

LSS Master LSS Slave
CAN ID = Ox7E5
1 1 1 I 1
— 0;20 Vendor ID reserved E—
1 1 1 L 1
CAN ID = 0x7E5
1 L) 1) 1
E— 0221 Product code reserved E—
1 1 1
CAN ID = Ox7E5
1 1 1) 1
 — 0222 Revision number reserved e
1 1 1 1
CAN ID = Ox7E5
1 1 1 Ll 1
Em—1 0223 Serial number reserved _—
1 1 1 1 1
CAN ID = 0x7E4
1]]) T 1
S 0324 reserved —
1 1 1 1 1 1
Figure 3-34 CAN communication | LSS commands switch state selective

3-46

ESCONZ2 Servo Controllers Communication Guide
CCMC | 2024-12 | rel11981

CAN Communication
m axo n Layer setting services (LSS)

3.4.23 Configure «Node-ID»
Configures the Node-ID (of value 1...127).
The LSS Master must determine the LSS Slave’s Node-ID in LSS configuration state. The LSS Master is responsible

to switch a single (only one!) LSS Slave into LSS state «Configuration» (=»Switch state selective) before requesting
this service.

cs 0x11 LSS Slave answers with error code and specific error
0 protocol successfully completed
error code
1 Node-ID out of value range
specific error always 0
LSS Master LSS Slave

CAN ID = 0x7E5

cs Node-ID !)) d ! 1
ode- reserve
0x11 i i

L)] L) L
reserved
1 1

— —
CAN ID = 0x7E4
— —

cs error | specific
0x11 code error i

Figure 3-35 CAN communication | Configure «Node-ID»

3424 Configure bit timing parameters

By means of the service configure bit timing parameters, the LSS Master must configure new bit timing. The new bit
timing will be active not before receiving =»Store configuration protocol or =»Activate bit timing parameters.

table selector always 0
table index CAN bit rate codes
0 protocol successfully completed
error code P
1 bit timing not supported
specific error always 0
LSS Master LSS Slave
CAN ID = 0x7E5
3 cs table table ! g i : S
0x13 | selector| index 1 ,reseWEd, i
CAN ID = 0x7E4
cs error | specific ! ! i !
| oxi3 code F(’error . |reserved| . e
Figure 3-36 CAN communication | Configure bit timing parameters

ESCON2 Servo Controllers Communication Guide
CCMC | 2024-12 | rel11981 3-47

CAN Communication
Layer setting services (LSS) m axo n

3.4.25 Activate bit timing parameters
Activates the bit timing parameters selected with =»Configure bit timing parameters.

The duration [ms] of the two periods time to wait until the bit timing parameters switch is done
switch delay (first period) and before transmitting any CAN message with the new bit timing parameters after
performing the switch (second period).

Upon receiving an activate bit timing command, the LSS Slave stops communication on old (actual) bit rate. After the
first switch delay, communication is switched to new bit rate, after a second switch delay, the LSS Slave is permitted to
communicate with new bit rate.

LSS Master LSS Slave
CAN ID = O0x7E5
1))) L
1 05?5 switch delay reserved E—
1 1 1 1 1
Figure 3-37 CAN communication | Activate bit timing parameters

Activate bit timing command -

Communication old bit rate _ l 1

Communication new bit rate

vV

|

‘, switch delay 1 ', switch delay 2 \
3. VA 7

Figure 3-38 CAN communication | Switch delay

3.4.26 Store configuration protocol
Stores the parameters «Node-ID», «CAN bit rate», and «Serial Communication Interface bit rate» in a non-volatile
memory.
0 protocol successfully completed
error code 1 store configuration is not supported
2 storage media access error
specific error always 0
LSS Master LSS Slave
CAN ID = 0x7E5
1 1 1 L)) 1
E—1 02?7 reserved _—
1 1 1 1 1 1
CAN ID = 0x7E4
¢ cs error | specific ! ! : ! ¢
0x17 code error . |reserved i n
Figure 3-39 CAN communication | Store configuration protocol

ESCONZ2 Servo Controllers Communication Guide
3-48 CCMC | 2024-12 | rel11981

maxon

3.4.2.7

Inquire identity «Vendor ID»

CAN Communication
Layer setting services (LSS)

Reads the «Vendor ID» of a LSS Slave («ldentity object» 0x1018; *ESCON2 Firmware Specification).

LSS Master

—
%

Figure 3-40

3.4.2.8

CAN ID = 0x7E5

cs
O0x5A

I 1
reserved
1 1

CAN ID = 0x7E4

cs
O0x5A

|
Vendor ID
1

) 1
reserved
1 1

CAN communication | Inquire identity «Vendor ID»

Inquire identity «Product code»

LSS Slave

—
%

Reads the «Product code» of a LSS Slave («ldentity object» 0x1018; =»ESCON2 Firmware Specification).

LSS Master

—
%

Figure 3-41

3.4.29

CAN ID = 0x7E5

cs
0x5B

] 1
reserved
1 1

CAN ID = 0x7E4

cs
0x5B

|
Product code
1

] |
reserved
L 1

CAN communication | Inquire identity «Product code»

Inquire identity «Revision number»

LSS Slave

—
%

Reads the «Revision number» of a LSS Slave («Identity object» 0x1018; »ESCON2 Firmware Specification).

LSS Master

—
%

Figure 3-42

3.4.2.10

CAN ID = Ox7E5

cs
0x5C

]]
reserved
1 1

CAN ID = 0x7E4

cs
0x5C

T

]
Revision number
[1 1

] |
reserved
L 1

CAN communication | Inquire identity «Revision number»

Inquire identity «Serial number»

LSS Slave

—
%

Reads the «Serial number» of a LSS Slave («Identity object» 0x1018; *ESCON2 Firmware Specification).

LSS Master

—
H

Figure 3-43

CAN ID = 0x7E5

cs
0x5D

1 L]
reserved
A 1

CAN ID = 0x7E4

cs
0x5D

|
Serial number
1

] |
reserved
1 1

CAN communication | Inquire identity «Serial number»

LSS Slave

—
%

ESCON2 Servo Controllers Communication Guide
CCMC | 2024-12 | rel11981

3-49

CAN Communication
Layer setting services (LSS) m axo n

3.4.2.11 Inquire identity «Node-ID»
Reads the «Node-ID» of a LSS Slave («ldentity object» 0x1018; *>ESCON2 Firmware Specification).

LSS Master LSS Slave
CAN ID = 0x7E5
]]] I I 1
1 Ong reserved —1
1 1 1 1 1 1
CAN ID = 0x7E4
|]]) 1
& Ong Node-ID reserved —
1 1 1 1 1

Figure 3-44 CAN communication | Inquire identity «Node-ID»

3.4.212 Identify remote slave

The LSS Master detects the LSS Slaves in the CAN network by sending an "identify remote slave" request. This
request includes a specific "Vendor ID," a specific "Product Code," and a range of "Revision Numbers" and "Serial
Numbers" defined by a low and high boundary. All LSS Slaves that match this LSS address range (inclusive of boun-
daries) respond with an "identify slave" response (cs = Ox4F).

Using this protocol, the LSS Master can perform a binary network search. This method first sets the LSS address
range to the full address area and sends an "identify remote slave" request. The range (which includes one or more
responding LSS Slaves) is then split into two sub-areas. The LSS Master repeats the request for each sub-area until it
identifies each LSS Slave ("Identity Object" 0x1018; see = ESCON2 Firmware Specification).

LSS Master LSS Slave
CAN ID = 0x7E5
]) 1
— 0)326 Vendor ID reserved —
1 1 1 1 1
CAN ID = 0x7E5
] I]) 1
— 0227 Product code reserved e
1 1 1 1 1
CAN ID = 0x7E5
1 1 1 Ll 1
E—1 0528 Revision number low reserved _—
1 1 1 1 1
CAN ID = 0x7E5
1 1 1) 1
E—1 0)329 Revision number high reserved E—
1 1 1 1 1
CAN ID = 0x7E5
T]]] |
E— OiiA Serial number low reserved E—
1 1 1 1 1
CAN ID = 0x7E5
1 1 1 1 |
0;(;23 Serial number high reserved —
1 1 1 1 1
CAN ID = 0x7E4
% cs]] J]] | %
reserved
T Ox4F : , : . : : H&
Figure 3-45 CAN communication | Identify remote slave

ESCONZ2 Servo Controllers Communication Guide
3-50 CCMC | 2024-12 | rel11981

CAN Communication
m axo n Layer setting services (LSS)

3.4.2.13 Identify non-configured remote slave

This function allows the LSS Master to detect any non-configured devices in the network. All LSS Slaves without a
configured Node-ID (0xFF) respond with a command specifier 0x50.

LSS Master LSS Slave
CAN ID = O0x7E5
cs L] L] L] L] L]]
—> | oxaC reserved —
[L il 1 1 1
CAN ID = 0x7E4
H cs] |]]] L %
& 0x50 | | .reservedl | | —
Figure 3-46 CAN communication | Identify non-configured remote slave

ESCON2 Servo Controllers Communication Guide
CCMC | 2024-12 | rel11981 3-51

CAN Communication
Layer setting services (LSS) m axo n

eepage intentionally left blankee

ESCONZ2 Servo Controllers Communication Guide
3-52 CCMC | 2024-12 | rel11981

Firmware update
m x n Program data file

4 FIRMWARE UPDATE

The following chapter explains how to update the firmware of an ESCON2 servo controller directly via the existing bus
systems without using "Motion Studio." It describes compatibility and the required implementation steps for each
communication interface.

41 Program data file

The firmware update sequence requires a "Program Data File" in . msdc format that contains the desired firmware
version. You can obtain this file by exporting it from the Motion Studio firmware catalog tool.

4.2 Supported interfaces and sequence

421 CANopen

a) Prepare controller
(=»Chapter “4.3.1 Prepare controller” on page 4-53)

b) Download Program Data File <ESCON2_Swxxxx_Hwxxxx_Anxxxx_AVxxxx.msdc»
(=»Chapter “4.3.2 Download «Program Data File»” on page 4-54)

c) Check identity
(=»Chapter “4.3.3 Check identity” on page 4-55)

4.2.2 Serial Communication Interface (SCI)

Note
The firmware update functionality for the SCI interface is available on request.

4.3 Update procedure
The following section describes the steps required to implement the different firmware update sequences.

Note
During the firmware update, the system resets all parameters to their default values. Save the parameters before the
update and restore them after the update.

4.3.1 Prepare controller

Step Description
_ A Change to device control =>separate document «kESCON2 Firmware Specification»;
Change state «Disabled» chapter «Device Control» [13]

Is state
«Disabled»
reached?

_! | B | Check state

Table 4-47 Firmware update without «Motion Studio» | How to prepare the controller

ESCON2 Servo Controllers Communication Guide
CCMC | 2024-12 | rel11981 4-53

Firmware update
Update procedure m x n

4.3.2 Download «Program Data File»

«Programm Data File» =» [4] implementation steps for each communication interface. Please note that a firmware
download leads to a loss of current parameter values. If desired, they need to be safed upfront.

| Step Description

Change to device control
A | state «Pre-Operational» =>NMT Services
[a]

Change to NMT state
«Pre-Operational»

B | Check NMT state [a] \

..........

No Write «Stop» to object «Program Control»
Is state i -
P omnegs™ > | ¢ | Stop program [b] Object 0x1F51-01
Value 0x00 (Stop)
. Timeout 10 ms
Y!?S
AY4
Stop progiai Read value from object «Program Control»
D Wait until program is Object 0x1F51-01
T stopped Expected value | 0x00 (Stopped)
No Wait timeout 10°000 ms

Is program
stopped?

Write «Clear» to object «Program Control»

Yes E | Clear program Object 0x1F51-01
4 Value 0x03 (Clear)
Clear program Timeout 20’000 ms
Write file content to object «Program Data»
Download program F | Download program ijeCt 0x1F50-01
File ESCON2_wwwwh_xxxxh_yyyyh_zzzzh.msdc
Timeout 10’000 ms
Start program Write «Start» to object «Program Control»
G| Start program [b] ObjeCt 0x1F51-01
[G=ssm===ry Value 0x01 (start)
b Timeout 10 ms

Is program
started?

Read value from object «Program Control»
H Wait until program is Object 0x1F51-01

started Expected value | 0x01 (Started)
Wait timeout 10'000 ms

[a] only for CANopen interface

During starting or stopping the program, the communication protocol is aborted. The controller does not
respond to the received command. Reduce timeout and do not check communication result.

[b]

Table 4-48 Firmware update without «Motion Studio» | How to download the program data file

ESCONZ2 Servo Controllers Communication Guide
4-54 CCMC | 2024-12 | rel11981

Firmware update
m x n Object dictionary

4.3.3 Check identity

Step Description

Read value from object «ldentity — Product code»
(ng?gr"rvl”[')‘;ﬁg rie | | Check «Product Code» Object 0x1018-02
Expected value | Hardware version and application number

. Read value from object «ldentity — Revision number»
Check identity

(0x1018) Check «Revision number» | Object 0x1018-03
Expected value | Software version and application version

Table 4-49 Firmware update without «Motion Studio» | How to check identity

44 Object dictionary

For general information about the object directory, refer to «Firmware Specification =» [13] chapter 6».

OBJECT OVERVIEW

When the program is stopped and the bootloader is active, only a few objects are available. The following objects are
necessary for the download.

Index Name Object code
0x1008 Manufacturer device name VAR

0x1018 Identity object RECCORD
0x1F50 Program data ARRAY
0x1F51 Program control ARRAY
0x1F56 Program software identification ARRAY
0x1F57 Flash status identification ARRAY
0x2100 Serial number complete UNSIGNED64

Table 4-50 Firmware update | Objects in «Stopped» state

4.41 Manufacturer device name
Holds the manufacturer device name.

Name Manufacturer device name
Index 0x1008
Subindex 0x00
Data type VISIBLE_STRING
Access type RO
Default value ESCON2
Value range -
PDO mapping NO
Persistent NO
Table 4-51 Firmware update | Manufacturer device name

ESCON2 Servo Controllers Communication Guide
CCMC | 2024-12 | rel11981 4-55

Firmware update
Object dictionary m x n

4.4.2 Identity object
Provides general identification information about the device.

Name Identity object
Index 0x1018
Object code RECORD
Highest subindex

4
supported

Table 4-52 Firmware update | Identiy object

The Firmware version history provides more detailed information about the versions.

44.21 Vendor ID
Unique vendor identification for "maxon motor ag", defined by CiA.

Name Vendor ID
Index 0x1018
Subindex 0x01

Object code UNSIGNED32
Access type RO

Default value 0x000000FB
Value range -

PDO mapping NO

Persistent NO

Table 4-53 Firmware update | Vendor ID

4422 Product code
The high word contains the hardware version. The low word is always 0x0.

Name Product code
Index 0x1018
Subindex 0x02
Data type UNSIGNED32
Access type RO
Default value -
Value range -
PDO mapping NO
Persistent NO
Table 4-54 Firmware update | Product code

ESCONZ2 Servo Controllers Communication Guide
4-56 CCMC | 2024-12 | rel11981

maxon

4423 Revision number
The object revision number is always 0x0.

Firmware update
Object dictionary

Name Revision number
Index 0x1018
Subindex 0x03
Data type UNSIGNED32
Access type RO
Default value -
Value range -
PDO mapping NO
Persistent NO
Table 4-55 Firmware update | Revision number

4424 Serial number

This object contains the last 8 digits of the device serial number. Related object: Serial number complete

Name Serial number
Index 0x1018
Subindex 0x04
Data type UNSIGNED32
Access type RO
Default value -
Value range -
PDO mapping NO
Persistent NO
Table 4-56 Firmware update | Serial number

443 Program data

This object is used to download a firmware file (msdc). The download will start only if both a stop program command

and a clear program command are immediately received by Program control.

Name Program data
Index 0x1F50
Object code Array
Highest subindex
1
supported
Table 4-57 Firmware update | Program data

4431 Program number 1

Name Program number 1
Index 0x1F50

Subindex 0x01

Data type OCTET_STRING
Access type WO

ESCON2 Servo Controllers Communication Guide
CCMC | 2024-12 | rel11981

4-57

Firmware update
Object dictionary m x n

Name Program number 1

Default value -

Value range -
PDO mapping NO
Persistent NO
Table 4-58 Firmware update | Program number 1

444 Program control
This object initiates firmware download-related commands and provides information about the running application.

While the bootloader is active, only a limited set of objects is supported, and only one communication interface can be
used. For example, the bootloader is activated with the stop program command. When in bootloader mode, only one

communication interface is accepted at a time. The first command received by the bootloader determines which inter-
face is used. You can only change the communication interface after a device reset or a start program command.

To successfully perform a firmware update, follow this command sequence:
1) Stop the program.
2) Clear the program.
3) Download the program with write access to Program data.

Name Program control
Index 0x1F51
Object code Array
Highest subindex
1
supported
Table 4-59 Firmware update | Program control

44.41 Program number 1

Name Program number 1

Index 0x1F51

Subindex 0x01

Data type UNSIGNEDS8

Access type RW

Default value -

Value range Program control — value ranges

PDO mapping NO

Persistent NO

Table 4-60 Firmware update | Program number 1

Value Write access Read access

0x00 Stop program: o Program stoppe.d: o .
Activate bootloader application Bootloader application is active

0X01 Start program: Program §tartgd:
Activate Program Program is active

ESCONZ2 Servo Controllers Communication Guide
4-58 CCMC | 2024-12 | rel11981

maxon

Firmware update
Object dictionary

Value Write access Read access
0x02 Rgg,et program. Not used
Initiate device reset
Clear program: No program available:
0x03 Erase the flash memory before new program | No valid application is available in the flash
data is downloaded memory
Table 4-61 Firmware update | Value ranges
4442 Program software identification

This object shows identification for the loaded program software.

If no valid flash content or program software is available, the program software identification is "0" (zero). While the
bootloader is active, the identification of the currently running bootloader version is returned. After a bootloader
update, a device reset or a start program command is required to display the new identification number.

Name Program software identification

Index 0x1F56

Object code Array

Highest subindex

1

supported
Table 4-62 Firmware update | Program software identification
4443 Program number 1

Name Program number 1

Index 0x1F56

Subindex 0x01

Data type UNSIGNED32

Access type RO

Default value

Value range Program software identification — Bits
PDO mapping NO
Persistent NO
Table 4-63 Firmware update | Program number 1
Bit Description
31...16 Identification of the application
15...0 Identification of the bootloader
Table 4-64 Firmware update | Bit

ESCON2 Servo Controllers Communication Guide

CCMC | 2024-12 | rel11981

4-59

Firmware update
Object dictionary m x n

4.4.5 Flash status identification
This object shows the status of the firmware download process.

Name Flash status identification
Index 0x1F57
Object code Array
Highest subindex
1
supported
Table 4-65 Firmware update | Flash status identification

44.51 Program number 1

Name Program number 1
Index 0x1F57
Subindex 0x01
Data type UNSIGNED32
Access type RO
Default value -
Value range Flash status identification — Bits
PDO mapping NO
Persistent NO
Table 4-66 Firmware update | Program number 1
Bit Value Description
31...16 Manufacturer-specific information
15...8 Reserved, always 0

127...68 | Reserved for manufacturer-specific errors

67 Decryption error

Authentication sequence error: The expected command sequence (activate bootloader — clear

66 program — write program data) was not observed.

65 Flash clear error

64 Hardware version _mismatch. The received firmware cannot be used with this hardware;
manufacturerspecific error

63 Unspecified error

7.1 62...8 Reserved

Flash secured. Write access is currently forbidden.

General address error

Flash write error

Flash not cleared before write

Data format error or data CRC error

Data format unknown

No valid program available

No error occurred, valid program available

Download in progress. Program software identification is not valid.

Ol 2O =2IN WAl N

No download in progress. Program software identification is valid.

Table 4-67 Firmware update | Bit

ESCONZ2 Servo Controllers Communication Guide
4-60 CCMC | 2024-12 | rel11981

Firmware update
m x n Object dictionary

4.4.6 Serial number complete
Contains the full 64-bit device serial number.

Name Serial number complete
Index 0x2100
Subindex 0x01
Data type UNSIGNED64
Access type RO
Default value -
Value range -
PDO mapping NO
Persistent NO
Table 4-68 Firmware update | Serial number complete

ESCON2 Servo Controllers Communication Guide
CCMC | 2024-12 | rel11981 4-61

Firmware update
Object dictionary x n

eepage intentionally left blankee

ESCONZ2 Servo Controllers Communication Guide
4-62 CCMC | 2024-12 | rel11981

maxo n List of Figures

LIST OF FIGURES

Figure 1-1

Figure 2-2

Figure 2-3

Figure 2-4

Figure 2-5

Figure 2-6

Figure 2-7

Figure 2-8

Figure 2-9

Figure 3-10
Figure 3-11
Figure 3-12
Figure 3-13
Figure 3-14
Figure 3-15
Figure 3-16
Figure 3-17
Figure 3-18
Figure 3-19
Figure 3-20
Figure 3-21
Figure 3-22
Figure 3-23
Figure 3-24
Figure 3-25
Figure 3-26
Figure 3-27
Figure 3-28
Figure 3-29
Figure 3-30
Figure 3-31
Figure 3-32
Figure 3-33
Figure 3-34
Figure 3-35
Figure 3-36
Figure 3-37
Figure 3-38
Figure 3-39
Figure 3-40
Figure 3-41

Documentation StruCture 5
USB & serial communication (SCI) | V2 protocol frame structure. 11
USB & serial communication (SCI) | Commands 12
USB & serial communication (SCI) | Sending a data frameto ESCON2 12
USB & serial communication (SCI) | Receiving a response data frame from ESCON2 12
USB & serial communication (SCI) | Frame structure. i 13
USB & serial communication (SCI) | CRC algorithm. 14
USB & serial communication (SCI) | Slave state machine 16
USB & serial communication (SCI) | Command instruction (example) 17
CAN communication | Protocol layerinteractions. i e 23
CAN communication | ISO 11898 basic network setup. 23
CAN communication | With external bus termination (example). 24
CAN communication | Topology with internal bus termination (example). 24
CAN communication | Default identifier allocation scheme. 24
CAN communication | CAN data frame. 25
CAN communication | Standard frame format. 26
CAN communication | Process Data Object (PDO) e 31
CAN communication | PDO protocol.o 32
CAN communication | PDO communication Modest 32
CAN communication | PDO mapping example e 33
CAN communication | Service Data Object (SDO) e 35
CAN communication | Object dictionary aCCessttt e 35
CAN communication | SDO upload protocol (expedited transfer)—Read 36
CAN communication | SDO upload protocol (expedited transfer) —Write. 36
CAN communication | SDO upload protocol (expedited transfer)—Abort 36
CAN communication | Synchronization object (SYNC). 39
CAN communication | Synchronous PDO. e 40
CAN communication | Emergency service (EMCY) 40
CAN communication | Network management (NMT) e 41
CAN communication | NMT slave states. e 41
CAN communication | NMT ObjJecto e 42
CAN communication | Heartbeat protocol — Timing diagram 44
CAN communication | LSS commands switch stateglobal. 46
CAN communication | LSS commands switch state selective 46
CAN communication | Configure «Node-ID». 47
CAN communication | Configure bit timing parameters 47
CAN communication | Activate bit timing parameters. 48
CAN communication | Switch delay 48
CAN communication | Store configuration protocol. e 48
CAN communication | Inquire identity «Vendor ID» 49
CAN communication | Inquire identity «Productcode». 49

ESCON2 Communication Guide
CCMC | 2024-12 | rel11981 Z-63

List of Figures

Figure 3-42 CAN communication | Inquire identity «Revision number». 49
Figure 3-43 CAN communication | Inquire identity «Serial number» 49
Figure 3-44 CAN communication | Inquire identity «kNode-ID» 50
Figure 3-45 CAN communication | Identify remote slave. 50
Figure 3-46 CAN communication | Identify non-configured remote slave 51

ESCON2 Communication Guide
Z-64 CCMC | 2024-12 | rel11981

maxo n List of Tables

LIST OF TABLES

Table 1-1

Table 1-2

Table 1-3

Table 1-4

Table 1-5

Table 1-6

Table 1-7

Table 2-8

Table 2-9

Table 2-10
Table 2-11
Table 2-12
Table 2-13
Table 2-14
Table 2-15
Table 2-16
Table 2-17
Table 2-18
Table 2-19
Table 2-20
Table 2-21
Table 2-22
Table 2-23
Table 2-24
Table 3-25
Table 3-26
Table 3-27
Table 3-28
Table 3-29
Table 3-30
Table 3-31
Table 3-32
Table 3-33
Table 3-34
Table 3-35
Table 3-36
Table 3-37
Table 3-38
Table 3-39
Table 3-40
Table 3-41

Notations used in this document e 6
Abbreviations & aCronNyms USEdottt 7
CAN communication | Notations e 7
CAN commuUNIiCatioN | TEIMS e e e e e e e 7
Symbols and SigNS e 8
Brand names and trademark OWNErs 8
Sources for additional information. 9
Setup | Request frame 17
CRC calculation | Data array. e 17
CRC calculation | Data array. i e e e e 18
CRC check | Data arrayt e e e 18
CRC calculation | Response frame e 19
ReadObject | Request frame. 20
ReadObject | Response frame 20
InitiateSegmentRead | Request frame 20
InitiateSegmentRead | Response frame 20
SegmentRead | Request frame. 21
SegmentRead | Response frame 21
WriteObject | Request frame. 21
WriteObject | Response frame 21
InitiateSegmentedWrite | Request frame 22
InitiateSegmentedWrite | Response frame 22
SegmentWrite | Request frame. e 22
SegmentWrite | Response frame 22
CAN communication | Objects of the default connectionset 25
CAN communication | Recommended componentsttt 27
CAN communication | CAN bus wiring— CAN Bus Line. i e 27
CAN communication | Node ID (1) oottt e e 28
CAN communication | DIP switch 1...5 settings (example). i 28
CAN communication | CAN communication — Bit rates and linelengths 29
CAN communication | Object dictionary layout. 30
CAN communication | Object dictionary entry. e 30
CAN communication | Communication objects 31
CAN communication | COB-IDs — Default values and valuerange., 33
CAN communication | SDO transfer protocol —Legend i 37
CAN communication | Command specifier (OVerview) e 37
CAN communication | «kExample Read Statusword» e 37
CAN communication | Example «Write Controlword». 38
CAN communication | Example «Read non-existent subindex» 38
CAN communication | Example «Read velocity actual value» 38
CAN communication | Example «Write Target velocity». e 39

ESCON2 Communication Guide
CCMC | 2024-12 | rel11981 Z-65

List of Tables

Table 3-42
Table 3-43
Table 3-44
Table 3-45
Table 3-46
Table 4-47
Table 4-48
Table 4-49
Table 4-50
Table 4-51
Table 4-52
Table 4-53
Table 4-54
Table 4-55
Table 4-56
Table 4-57
Table 4-58
Table 4-59
Table 4-60
Table 4-61
Table 4-62
Table 4-63
Table 4-64
Table 4-65
Table 4-66
Table 4-67
Table 4-68

CAN communication | Emergency message frame 40
CAN communication | NMT slave (commands, transitions, and states). 42
CAN communication | NMT protocCols.o e e e 43
CAN communication | Heartbeat protocol —Datafield. i 44
CAN communication | LSS commands OVerviewt 45
Firmware update without «Motion Studio» | How to prepare the controller 53
Firmware update without «Motion Studio» | How to download the program datafile. 54
Firmware update without «Motion Studio» | How to checkidentity 55
Firmware update | Objects in «Stopped» state. 55
Firmware update | Manufacturer device name 55
Firmware update | Identiy Object. 56
Firmware update | Vendor ID 56
Firmware update | Product code. 56
Firmware update | Revision number. 57
Firmware update | Serial nUMber e 57
Firmware update | Program data 57
Firmware update | Program number 1 e 58
Firmware update | Program control 58
Firmware update | Program number 1 58
Firmware update | Value ranges. 59
Firmware update | Program software identification 59
Firmware update | Program number 1 59
Firmware update | Bit 59
Firmware update | Flash status identification 60
Firmware update | Program number 1 60
Firmware update | Bit 60
Firmware update | Serial number complete 61

Z-66

ESCON2 Communication Guide
CCMC | 2024-12 | rel11981

maxon

INDEX

A

abbreviations & acronyms 7
alerts 8

B

bit rate and line length 29

C

CAN
Bitrate 29
communication 23
ID, set 27
Node ID, set 27
CAN Client, Master, Server, Slave (definition) 7
CAN Interface Card (list of manufacturers) 26
CMS (definition) 6
COB, COB-ID (definition) 6
COB-ID, configuration 33
codes (used in this document) 6
command specifiers 37
Communication Test of CAN network 29
country-specific regulations 70

D

Default COB-ID 33
device address, set 27

E

ESD 10

F

functions
read 20
write 21

H

Heartbeat Consumer Time, calculation of 44
Heartbeat Protocol 43
how to
decode abbreviations and acronyms 6
interpret icons (and signs) used in this document 8

ID (definition) 6

informatory signs 8
InitiateSegmentedRead (function) 20
InitiateSegmentedWrite (function) 22

L

line length and bit rate 29
LSS (definition) 6

Index

MAC (definition) 6
mandatory action signs 8

N

NMT State

Heartbeat 44
Node ID, set 27
nodes, # of addressable 27
notations (used in this document) 6
number of addressable nodes 27

(0

Object (definition) 7
OD (definition) 6
OSI Reference Model 23

P

PC/CAN Interface Card (list of manufacturers) 26
PC/CAN Interface, wiring 27
PLC (definition) 7
PLC (list of manufacturers) 26
PLC, connection to CAN bus 27
precautions 10
prohibitive signs 8
protective measures (ESD) 10
purpose
of the document 5

R

ReadObject (function) 20
Receive (definition) 7
regulations, applicable 10
RO, RW, WO (definition) 7

S

safety alerts 8
safety first! 10
SCI
communication 11
Communication basics 11
SegmentedWrite (function) 22
SegmentRead (function) 21
Serial communication
data format 15
signs used 8
symbols used 8

T

Transmit (definition) 7

ESCON2 Communication Guide
CCMC | 2024-12 | rel11981

Z-67

Index m axo n

U

USB
communication 7171
Communication basics 711

w

WriteObject (function) 21

ESCON2 Communication Guide
Z-68 CCMC | 2024-12 | rel11981

maxon Index

eepage intentionally left blankee

ESCON2 Communication Guide
CCMC | 2024-12 | rel11981 Z-69

maxon

© 2024 maxon. All rights reserved. Any use, in particular reproduction, editing, translation, and copying, without prior written
approval is not permitted (contact: maxon international Itd., Brinigstrasse 220, CH-6072 Sachseln, +41 41666 15 00,
www.maxongroup.com). Infringements will be prosecuted under civil and criminal law. The mentioned trademarks belong to their
respective owners and are protected under trademark laws. Subject to change without prior notice.

CCMC | ESCON2 Servo Controllers Communication Guide | Edition 2024-12 | DoclID rel11981

	READ THIS FIRST
	Table of Contents
	1 About
	1.1 About this document
	1.1.1 Intended purpose

	1.2 Target audience
	1.3 How to use
	1.3.1 Symbols & signs
	1.3.2 Trademarks and brand names

	1.4 Sources for additional information
	1.5 Copyright
	1.6 About the devices
	1.7 About the safety precautions

	2 USB & Serial Communication (SCI)
	2.1 General information
	2.2 Communication basics
	2.2.1 Physical layer
	2.2.1.1 USB
	2.2.1.2 SCI

	2.2.2 Data link layer
	2.2.2.1 Flow control
	2.2.2.2 Frame structure

	2.2.3 Cyclic redundancy check (CRC)
	2.2.3.1 CRC calculation
	2.2.3.2 CRC algorithm

	2.2.4 Byte stuffing
	2.2.5 Transmission byte order
	2.2.6 Data format (Serial Communication)
	2.2.7 Slave state machine
	2.2.8 Example: Command instruction

	2.3 Command reference
	2.3.1 Read functions
	2.3.1.1 ReadObject
	2.3.1.2 InitiateSegmentedRead
	2.3.1.3 SegmentRead

	2.3.2 Write functions
	2.3.2.1 WriteObject
	2.3.2.2 InitiateSegmentedWrite
	2.3.2.3 SegmentWrite

	3 CAN Communication
	3.1 General information
	3.2 CANopen basics
	3.2.1 Physical layer
	3.2.2 Network structure
	3.2.3 Identifier allocation scheme
	3.2.4 Data Link Layer
	3.2.5 Configuration
	3.2.5.1 Step 1: CANopen Master
	3.2.5.2 Step 2: CAN Bus Wiring
	3.2.5.3 Step 3: CAN Node ID
	3.2.5.4 DIP Switch 1…5, Addresses 1…31
	3.2.5.5 Step 4: CAN Communication
	3.2.5.6 Step 5: Activate changes
	3.2.5.7 Step 6: Communication test

	3.3 CANopen application layer
	3.3.1 Object dictionary
	3.3.2 Communication objects
	3.3.3 PDO Communication
	3.3.3.1 PDO mapping
	3.3.3.2 PDO configuration

	3.3.4 SDO Communication
	3.3.4.1 Expedited SDO protocol
	3.3.4.2 SDO communication examples

	3.3.5 SYNC Object
	3.3.6 EMCY Object
	3.3.7 Network management
	3.3.7.1 NMT Services
	3.3.7.2 Heartbeat Protocol

	3.4 Layer setting services (LSS)
	3.4.1 Overview
	3.4.2 LSS commands
	3.4.2.1 Switch state global
	3.4.2.2 Switch state selective
	3.4.2.3 Configure «Node-ID»
	3.4.2.4 Configure bit timing parameters
	3.4.2.5 Activate bit timing parameters
	3.4.2.6 Store configuration protocol
	3.4.2.7 Inquire identity «Vendor ID»
	3.4.2.8 Inquire identity «Product code»
	3.4.2.9 Inquire identity «Revision number»
	3.4.2.10 Inquire identity «Serial number»
	3.4.2.11 Inquire identity «Node-ID»
	3.4.2.12 Identify remote slave
	3.4.2.13 Identify non-configured remote slave

	4 Firmware update
	4.1 Program data file
	4.2 Supported interfaces and sequence
	4.2.1 CANopen
	4.2.2 Serial Communication Interface (SCI)

	4.3 Update procedure
	4.3.1 Prepare controller
	4.3.2 Download «Program Data File»
	4.3.3 Check identity

	4.4 Object dictionary
	4.4.1 Manufacturer device name
	4.4.2 Identity object
	4.4.2.1 Vendor ID
	4.4.2.2 Product code
	4.4.2.3 Revision number
	4.4.2.4 Serial number

	4.4.3 Program data
	4.4.3.1 Program number 1

	4.4.4 Program control
	4.4.4.1 Program number 1
	4.4.4.2 Program software identification
	4.4.4.3 Program number 1

	4.4.5 Flash status identification
	4.4.5.1 Program number 1

	4.4.6 Serial number complete

	List of Figures
	List of Tables
	Index

